Skip to main content

Effect of Nano-TiO2 Particles on Mechanical Properties of Hydrothermal Aged Glass Fiber Reinforced Polymer Composites

  • Chapter
  • First Online:
Advanced Research in Nanosciences for Water Technology

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Polymer nanocomposites are defined as the combination of a polymer matrix and nano-sized additives. Fibrous polymer composites are gradually and steadily replacing the conventional metallic materials in almost all sectors of applications. However, environmental sensitivity and its implications on properties and performance of this class of material are the serious concern of the material scientists and technologists. This chapter emphasizes on the addition of nano-TiO2 filler into the epoxy matrix on water absorption, thermal and mechanical properties of glass fiber reinforced polymer (GFRP) composites. The effect of nanofillers content on water absorption and thermal and mechanical properties is evaluated and compared with neat epoxy glass fiber reinforced polymer (GFRP) composites. Weibull design parameters are determined to confirm the nominal flexural strength and its randomness of the experimental results. Fractography analysis supports the enhancement or deterioration of water diffusion coefficient and mechanical and thermal properties through field emission scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbezat M, Brunner AJ, Necola A, Rees M, Gasser P, Terrasi G (2009) Fracture behavior of GFRP laminates with nanocomposite epoxy resin matrix. J Compos Mater 43:959–976

    Article  CAS  Google Scholar 

  • Bauer F, Decker U, Ernst H, Findeisen M, Langguth H, Mehnert R (2006) Functionalized inorganic/organic nanocomposites as new basic raw materials for adhesives and sealants Part 2. Int J Adhes Adhes 26:567–570

    Article  CAS  Google Scholar 

  • Böger L, Sumfleth J, Hedemann H, Schulte K (2010) Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Compos Part Appl Sci Manuf 41:1419–1424

    Article  Google Scholar 

  • Carballeira P, Haupert F (2010) Toughening effects of titanium dioxide nanoparticles on TiO2/epoxy resin nanocomposites. Polym Compos 31:1241–1246

    CAS  Google Scholar 

  • Chang LN, Chow WS (2010) Accelerated weathering on glass fiber/epoxy/organo-montmorillonite nanocomposites. J Compos Mater 44:1421–1434

    Article  CAS  Google Scholar 

  • Chatterjee A, Islam MS (2008) Fabrication and characterization of TiO2–epoxy nanocomposite. Mater Sci Eng A 487:574–585

    Article  Google Scholar 

  • Chau JLH, Tung C-T, Lin Y-M, Li A-K (2008) Preparation and optical properties of titania/epoxy nanocomposite coatings. Mater Lett 62:3416–3418

    Article  CAS  Google Scholar 

  • Dikobe DG, Luyt AS (2010) Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polym Lett 4:729–741

    Article  CAS  Google Scholar 

  • Dong C, Davies IJ (2012) Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites. Mater Des 37:450–457

    Article  CAS  Google Scholar 

  • Ellyin F, Maser R (2004) Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens. Compos Sci Technol 64:1863–1874

    Article  CAS  Google Scholar 

  • Fan XJ, Lee SWR, Han Q (2009) Experimental investigations and model study of moisture behaviors in polymeric materials. Microelectron Reliab 49:861–871

    Article  CAS  Google Scholar 

  • Gautier L, Mortaigne B, Bellenger V (1999) Interface damage study of hydrothermally aged glass-fibre-reinforced polyester composites. Compos Sci Technol 59:2329–2337

    Article  CAS  Google Scholar 

  • Ghosh PK, Nukala SK (2008) Properties of adhesive joint of inorganic nano-filler composite adhesive. Indian J Eng Mater Sci 15:68

    CAS  Google Scholar 

  • Godara A, Gorbatikh L, Kalinka G, Warrier A, Rochez O, Mezzo L (2010) Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos Sci Technol 70:1346–1352

    Article  CAS  Google Scholar 

  • Gojny FH, Wichmann MH, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fiber-reinforced composites. Compos Part Appl Sci Manuf 36:1525–1535

    Article  Google Scholar 

  • Gonon P, Sylvestre A, Teysseyre J, Prior C (2001) Combined effects of humidity and thermal stress on the dielectric properties of epoxy-silica composites. Mater Sci Eng B 83:158–164

    Article  Google Scholar 

  • Hayashi K, Kurosaka Y, Osako Y, Ha J, Vacha M, Sato H (2005) Electrical properties of composites of TiO 2-triphenylamine derivatives. Thin Solid Films 474:337–340

    Article  CAS  Google Scholar 

  • Hodzic A, Kim JK, Lowe AE, Stachurski ZH (2004) The effects of water aging on the interphase region and interlaminar fracture toughness in polymer–glass composites. Compos Sci Technol 64:2185–2195

    Article  CAS  Google Scholar 

  • Hong JI, Winberg P, Schadler LS, Siegel RW (2005) Dielectric properties of zinc oxide/low density polyethylene nanocomposites. Mater Lett 59:473–476

    Article  CAS  Google Scholar 

  • Iqbal K, Khan S-U, Munir A, Kim J-K (2009) Impact damage resistance of CFRP with the nanoclay-filled epoxy matrix. Compos Sci Technol 69:1949–1957

    Article  CAS  Google Scholar 

  • Jongsomjit B, Chaichana E, Praserthdam P (2004) LLDPE/nano-silica composites synthesized via in situ polymerization of ethylene/1-hexene with MAO/metallocene catalyst. J Mater Sci 40:2043–2045

    Article  Google Scholar 

  • Kim H-Y, Park Y-H, You Y-J, Moon C-K (2008) Short-term durability test for GFRP rods under various environmental conditions. Compos Struct 83:37–47

    Article  Google Scholar 

  • Kinloch AJ, Masania K, Taylor AC, Sprenger S, Egan D (2007) The fracture of glass-fibre-reinforced epoxy composites using nanoparticle-modified matrices. J Mater Sci 43:1151–1154

    Article  Google Scholar 

  • Lau K, Wong T, Leng J, Hui D, Rhee KY (2013) Property enhancement of polymer-based composites at cryogenic environment by using tailored carbon nanotubes. Compos Part B Eng 54:41–43

    Article  CAS  Google Scholar 

  • Li H, Zhang Z, Ma X, Hu M, Wang X, Fan P (2007) Synthesis and characterization of epoxy resin modified with nano-SiO2 and γ-glycidoxypropyltrimethoxy silane. Surf Coat Technol 201:5269–5272

    Article  CAS  Google Scholar 

  • Li W, He D, Dang Z, Bai J (2014) In situ damage sensing in the glass fabric reinforced epoxy composites containing CNT–Al2O3 hybrids. Compos Sci Technol 99:8–14

    Article  CAS  Google Scholar 

  • Luo J-J, Daniel IM (2003) Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol 63:1607–1616

    Article  CAS  Google Scholar 

  • Maggana C, Pissis P (1999) Water sorption and diffusion studies in an epoxy resin system. J Polym Sci Part B Polym Phys 37:1165–1182

    Article  CAS  Google Scholar 

  • Mangalgiri PD (1999) Composite materials for aerospace applications. Bull Mater Sci 22:657–664

    Article  CAS  Google Scholar 

  • Nayak RK, Mahato KK, Ray BC (2016) Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites. Compos Part A 90:736–747

    Article  CAS  Google Scholar 

  • Okpala CC (2014) The benefits and applications of nanocomposites. Int J Adv Engg Tech 6(4):12–18

    Google Scholar 

  • Park H-K, Su-Jin L, Yoon-Jeong K, Jang C-I, Won J-P (2007) Mechanical properties and microstructures of GFRP Rebar after long-term exposure to chemical environments. Polym Polym Compos 15:403–408

    CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Article  CAS  Google Scholar 

  • Pervin F, Zhou Y, Rangari VK, Jeelani S (2005) Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater Sci Eng A 405:246–253

    Article  Google Scholar 

  • Rao RMVGK, Chanda M, Balasubramanian N (1984) Factors affecting moisture absorption in polymer composites part II: influence of external factors. J Reinf Plast Compos 3:246–253

    Article  CAS  Google Scholar 

  • Silva MAG, da Fonseca BS, Biscaia H (2014) On estimates of durability of FRP based on accelerated tests. Compos Struct 116:377–387

    Article  Google Scholar 

  • Soundararajah QY, Karunaratne BSB, Rajapakse RMG (2009) Mechanical properties of poly(vinyl alcohol) montmorillonite nanocomposites. J Compos Mater 44(3):303–311

    Article  Google Scholar 

  • Won J-P, Yoon Y-N, Hong B-T, Choi T-J, Lee S-J (2012) Durability characteristics of nano-GFRP composite reinforcing bars for concrete structures in moist and alkaline environments. Compos Struct 94:1236–1242

    Article  Google Scholar 

  • Yu HJ, Wang L, Shi Q, Jiang GH, Zhao ZR, Dong XC (2006) Study on nano-CaCO3 modified epoxy powder coatings. Prog Org Coat 55:296–300

    Article  CAS  Google Scholar 

  • Zhai L, Ling G, Li J, Wang Y (2006) The effect of nanoparticles on the adhesion of epoxy adhesive. Mater Lett 60:3031–3033

    Article  CAS  Google Scholar 

  • Zhang X, Xu W, Xia X, Zhang Z, Yu R (2006) Toughening of cycloaliphatic epoxy resin by nanosize silicon dioxide. Mater Lett 60:3319–3323

    Article  CAS  Google Scholar 

  • Zunjarrao SC, Singh RP (2006) Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles. Compos Sci Technol 66:2296–2305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nayak, R.K. (2019). Effect of Nano-TiO2 Particles on Mechanical Properties of Hydrothermal Aged Glass Fiber Reinforced Polymer Composites. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_4

Download citation

Publish with us

Policies and ethics