Skip to main content

Bioconjugated Quantum Dots in Rapid Detection of Water Microbial Load: An Emerging Technology

  • Chapter
  • First Online:
Advanced Research in Nanosciences for Water Technology

Abstract

Drinking water contaminated with pathogenic living forms is a major concern for human health in developing countries because it can lead to acute and sometimes life-threatening gastrointestinal diseases. There is thus a need to detect potentially harmful pathogens and identify them in the presence of several other nonpathogenic microbes, particularly in the urban water systems to prevent infection and disease.

Shiga toxin producing E. coli is one of the largest common pathogenic bacteria causing diarrhea. Salmonella typhimurium and Listeria monocytogenes are other microbes contaminating water. Immediate detection of these pathogens can help avoid infections.

Nanomaterials have unique physical, optical, and electrical properties which can be employed for detection of pathogens. Quantum dots (QDs) are one such class deployed for rapid detection of pathogenic bacteria in water samples. QDs are preferred over the fluorescent organic dyes, as they display intense and stable fluorescence for a longer period of time; are resistant towards photo-bleaching; and provide a highly sensitive and specific detection of pathogens.

Biosensors that help in rapid detection of pathogenic bacteria using fluorescent bioconjugated quantum dots (QDs) are reported. This chapter summarizes studies on use of QDs or QD-based biosensors for detection of waterborne pathogens and scope for future applications in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler M, Wacker R, Niemeyer CM (2008) Sensitivity by combination: immuno-PCR and related technologies. Analyst 103:702–718

    Article  Google Scholar 

  • Armengaud J (2013) Microbiology and proteomics, getting the best of both worlds. Environ Microbiol 15:12–23

    Article  CAS  Google Scholar 

  • Brinkman NE, Francisco R, Nichols TL, Robinson D, Schaefer FW, Schaudies RP, Villegas EN (2013) Detection of multiple waterborne pathogens using microsequencing arrays. J Appl Microbiol 114:564–573

    Article  CAS  Google Scholar 

  • Bruchez MJ, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  • Canuel EA, Cloen JE, Ringelberg DB, Guckert JB, Rau GH (1995) Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. J Oceanol Limnol 40:67–81

    Article  CAS  Google Scholar 

  • Carew ME, Pettigrove VJ, Metzeling L, Hoffmann AA (2013) Environmental monitoring using nextgeneration sequencing: rapid identification of macroinvertebrate bioindicator species. Front Zool 10:45–50

    Article  Google Scholar 

  • Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Article  CAS  Google Scholar 

  • Cihalova K, Hegerova D, Jimenez AMJ, Milosavljevic V, Kudr J, Skalickova S, Hynek D, Kopel P, Vaculovicova M, Adam V (2017) Antibody-free detection of infectious bacteria using quantum dots based barcode assay. J Pharm Biomed Anal 134:325–332

    Article  CAS  Google Scholar 

  • Fan H, Wu Q, Kou X (2008) Co-detection of five species of water-borne bacteria by multiplex PCR. Life Sci J 5:47–54

    CAS  Google Scholar 

  • Fykse EM, Nilsen T, Nielsen AD, Tryland I, Delacroix S, Blatny JM (2012) Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Mar Pollut Bull 64:200–206

    Article  CAS  Google Scholar 

  • Gas F, Baus B, Pinto L, Compere C, Tanchou V, Quéméneur E (2010) One step immunochromatographic assay for the rapid detection of Alexandrium minutum. Biosens Bioelectron 25:1235–1239

    Article  CAS  Google Scholar 

  • Gullapalli S, Barron A (2010) Optical Characterization of Group 12–16 (II-VI) semiconductor nanoparticles by fluorescence spectroscopy. Connexions Web site

    Google Scholar 

  • Hedrick DB, White DC (1986) Microbial respiratory quinones in the environment: I. A sensitive liquid chromatographic method. J Microbiol Methods 5:243–254

    Article  CAS  Google Scholar 

  • Ishii S, Nakamura T, Ozawa S, Kobayashi A, Sano D, Okabe S (2014) Water quality monitoring and risk assessment by simultaneous multipathogen quantification. Environ Sci Technol 48:4744–4749

    Article  CAS  Google Scholar 

  • Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    Article  CAS  Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  CAS  Google Scholar 

  • Lee DY, Seto P, Korczak R (2010) DNA microarray-based detection and identification of waterborne protozoan pathogens. J Microbiol Methods 80:129–133

    Article  CAS  Google Scholar 

  • McClung RP, Roth DM, Vigar M, Roberts VA, Kahler AM, Cooley LA, Hilborn ED, Wade TJ, Fullerton KE, Yoder JS, Hill VR (2017) Waterborne disease outbreaks associated With environmental and undetermined exposures to water-United States, 2013–2014. Morb Mortal Wkly Rep 66:1222–1225

    Article  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  • Michalet X, Pinaud F, Lacoste TD, Dahan M, Bruchez MP (2001) Properties of flourescent semiconductor nanocrystals and their application to biological labeling. Single Mol 2:261–276

    Article  CAS  Google Scholar 

  • Mishra G, Bacher G, Roy U, Bhand S (2015) A label free impedemetric immunosensor for detection of Escherichia coli in water. Adv Sci Lett 4:76–82

    Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Res 30:545–610

    CAS  Google Scholar 

  • NIAID biodefense research agenda for category B and C priority pathogens, U.S department of health and human services (2004) http://biodefense.niaid.nih.gov

  • NygÃ¥rd K, Andersson Y, Lindkvist P, Ancker C, Asteberg I (2008) Water and infection: epidemiological studies of epidemic and endemic waterborne disease. University of Oslo, Oslo

    Google Scholar 

  • Rajeswaria PKP, Soderberga LM, Yacoubb A, Leijonb M, Svahna HA, Joenssona HN (2017) Multiple pathogen biomarker detection using an encoded bead array in droplet PCR. J Microbiol Methods 139:22–28

    Article  Google Scholar 

  • Ram S, Vajpayee P, Shanker R (2008) Rapid culture-independent quantitative detection of enterotoxigenic Escherichia coli in surface waters by real-time PCR with molecular beacon. Environ Sci Technol 42:4577–4582

    Article  CAS  Google Scholar 

  • Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. PathoGenetics 4:307–334

    Google Scholar 

  • Richa J, Gurpal S, Swati J, Zainuk Abid CKV, Harpal S, Neelam HZ, Udit S, Sameer S, Shrivastav TG (2011) Bioconjugated quantum dots based rapid detection of pathogenic bacteria from water. Int J Nanosci 10:199–203

    Article  Google Scholar 

  • Rosenthal JS, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24

    Article  CAS  Google Scholar 

  • Samendra PS, Masaaki K, Charles PG, Lan LP (2014) Rapid detection technologies for monitoring microorganisms in water. Biosens J 3:109

    Google Scholar 

  • Samhan FA, Kronlein MR, Fakher U, Kronlein C, Stedtfeld RD, Hashsham SA (2015) Detection and occurrence of indicator organisms and pathogens. Water Environ Res 87:883–900

    Article  CAS  Google Scholar 

  • Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Anal 129:672–677

    Article  CAS  Google Scholar 

  • Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Corre DL, Li X, Atochin I, Link DR, Griffiths AD, Pallier K, Blons H, Bouché O, Landi B, Hutchison JB, Laurent-Puig P (2013) Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59:1722–1731

    Article  CAS  Google Scholar 

  • Tanchou V (2014) Review of methods for the rapid identification of pathogens in water samples. In: Thematic group: chemical and biological risks to the water sector. Report EUR 26881 EN

    Google Scholar 

  • Taylora AD, Yua Q, Chena S, Homolaa J, Jianga S (2005) Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor. Sensors Actuators 107:202–208

    Article  Google Scholar 

  • Tracz DM, McCorrister SJ, Chong PM, Lee DM, Corbett CR, Westmacott GR (2013) A simple shotgun proteomics method for rapid bacterial identification. J Microbiol Methods 94:54–57

    Article  CAS  Google Scholar 

  • Tsen HY, Lin CK, Chi WR (1998) Development and use of 16s rRNA gene targeted PCR primers for the identification of Escherichia coli cells in waters. J Appl Microbiol 85:554–560

    Article  CAS  Google Scholar 

  • Veala DA, Deerea D, Ferraria B, Piperb J, Attfielda PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Methods 243:191–210

    Article  Google Scholar 

  • White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62

    Article  CAS  Google Scholar 

  • White DC, Cory AL, Ying-Dong MG, Yvette MP, Michael HW, Aaron DP, Smith CA (2002) Flash detection/identification of pathogens, bacterial spores and bioterrorism agent biomarkers from clinical and environmental matrices. J Microbiol Methods 48:139–147

    Article  CAS  Google Scholar 

  • WHO (2014) Preventing diarrhoea through better water, sanitation and hygiene. http://apps.who.int/iris/bitstream/handle/10665/150112

  • Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL (2002) Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 16:119–127

    Article  CAS  Google Scholar 

  • Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80:5854–5863

    Article  CAS  Google Scholar 

  • Wu TY, Su YY, Shu WH, Mercado AT, Wang SK, Hsu LY, Tsai YF, Chen CY (2016) A novel sensitive pathogen detection system based on microbead quantum dot system. Biosens Bioelectron 78:37–44

    Article  CAS  Google Scholar 

  • Yan X, Gurtler J, Fratamico P, Hu J, Gunther NW IV, Juneja V, Huang L (2011) Comprehensive approaches to molecular biomarker discovery for detection and identification of Cronobacter spp. (Enterobacter sakazakii) and Salmonella spp. Appl Environ Microbiol 77:1833–1843

    Article  CAS  Google Scholar 

  • Zhang CXY, Brooks BW, Huang H, Pagotto F, Lin M (2016) Identification of surface protein biomarkers of Listeria monocytogenes via bioinformatics and antibody-based protein detection tools. Appl Environ Microbiol 82:5465–5476

    Article  CAS  Google Scholar 

  • Zhua H, Sikoraa U, Ozcan A (2012) Quantum dot enabled detection of Escherichia coli using a cellphone. Ana 137:2541–2544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, I.P. et al. (2019). Bioconjugated Quantum Dots in Rapid Detection of Water Microbial Load: An Emerging Technology. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_2

Download citation

Publish with us

Policies and ethics