Skip to main content

Silver Nanoparticles as a Biocide for Water Treatment Applications

  • Chapter
  • First Online:
Advanced Research in Nanosciences for Water Technology

Abstract

The minimum inhibitory concentrations (MICs) assays conducted for Escherichia coli, S Staphylococcus aureus, Bacillus subtilis, and Penicillium phoeniceum cultures have shown that the antimicrobial activity of silver ions was superior to that of silver nanoparticles. The efficacy of nanosilver as an antimicrobial agent has been estimated against a range of microbes on the surface of fibrous ion-exchange sorbents. The cytotoxicity of silver nanoparticles has been studied using NIH-3T3, HEP-G2, A-549, PC-12, and Colo-320 cells via the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide) test. The obtained MTT test results have shown that silver nanoparticles with concentrations of ~1–10 ppm entering the body from air or liquid suspensions can present a potential risk to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles:689419. https://doi.org/10.1155/2014/689419

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhati M, Rai R (2017) Nanotechnology and water purification: Indian know-how and challenges. Environ Sci Pollut Res 24(30):23423–23435

    Article  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager J, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15(2):213–220

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58(3):211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson K, Stone V, Gilmour PS, Brown DM, MacNee W (2000) Ultrafine particles: mechanisms of lung injury. Phil Trans R Soc Lond A 358:2741–2749

    Article  CAS  Google Scholar 

  • Dos Santos CA, Seckler MM et al (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944

    Article  CAS  PubMed  Google Scholar 

  • Droste RL (1997) Theory and practice of water and wastewater treatment. Wiley Interscience, New York

    Google Scholar 

  • Grodzik M, Sawosz E (2006) The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology. J Anim Feed Sci 15(1):111–114

    Article  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    Article  CAS  PubMed  Google Scholar 

  • Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-018-4666-2

    Article  CAS  Google Scholar 

  • Khalandi B, Asadi N, Milani M, Davaran S, Abadi AJ, Abasi E, Akbarzadeh A (2017) A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res (Stuttg) 67(02):70–76

    CAS  Google Scholar 

  • Khaydarov RA, Khaydarov RR (2006) Purification of drinking water from 134,137Cs, 89,90Sr, 60Co and 129I. In: Dishovsky C (ed) Medical treatment of intoxication and decontamination of chemical agents in the area of terrorist attack. Springer, Dordrecht, pp 171–181

    Chapter  Google Scholar 

  • Khaydarov RA, Khaydarov RR (2008) Environmental change in the aral sea region: new approaches to water treatment. In: Liotta PH, Mouat DA, Kepner WG, Lancaster JM (eds) Environmental change and human security: recognizing and acting on hazard impacts, NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, pp 433–447

    Chapter  Google Scholar 

  • Khaydarov RA, Khaydarov RR, Evgrafova S, Estrin Y (2011) Using silver nanoparticles as an antimicrobial agent. In: Mikhalovsky S, Khajibaev A (eds) Biodefence. NATO science for peace and security series a: chemistry and biology. Springer, Dordrecht, pp 169–177

    Google Scholar 

  • Khaydarov RR, Khaydarov RA, Gapurova O, Estrin Y, Evgrafova S, Scheper T, Cho SY (2009) Antimicrobial effects of silver nanoparticles synthesized by an electrochemical method. In: Reithmaier JP, Petkov P, Kulisch W, Popov C (eds) Nanostructured materials for advanced technological applications, NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 215–218

    Chapter  Google Scholar 

  • Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Ski Physiol 12:247–256

    Article  CAS  Google Scholar 

  • Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 75:551–556

    Article  CAS  Google Scholar 

  • Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O'Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol 32:3–13

    Article  CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cyto of nanopart. Small 4(1):26–49

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Memb Sci 331(1):50–56. https://doi.org/10.1016/j.memsci.2009.01.007

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek E (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • McGillicuddy E, Murray I, Kavanagh S et al (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    Article  CAS  PubMed  Google Scholar 

  • Miranda RR, Bezerra AGJR, Oliveira RCA et al (2017) Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicol In Vitro 5:134–143

    Article  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotech 16:2346–2353

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyanedel-Craver VA, Smith JA (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol 42(3):927–933

    Article  CAS  PubMed  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Rosa LR, Rosa RD, Da Veiga MAMS (2016) Colloidal silver and silver nanoparticles bioaccessibility in drinking water filters. J Environ Chem Eng 4:3451–3458

    Article  CAS  Google Scholar 

  • Savage N, Diall MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  • Soete DD, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley Interscience, New York

    Google Scholar 

  • Solov’ev AY, Potekhina TS, Chernova IA et al (2007) Track membrane with immobilized colloid silver particles. Russ J Appl Chem 80(3):438–442

    Article  Google Scholar 

  • Soto KF, Carrasco A, Powell TG, Garza KM, Murr LE (2005) Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 7:145–169

    Article  CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (1996) Guidelines for drinking-water quality, vol 2. WHO, Geneva

    Google Scholar 

  • Yoon KO, Hoon JG, Yeon B, Park CW, Wang JH (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42:1251–1255

    Article  CAS  PubMed  Google Scholar 

  • Zverev MP (2002) Fibre sorbents- material for environmental protection: a review. Fibre Chem 34(6):456–465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khaydarov, R.R., Khaydarov, R.A., Gapurova, O., Garipov, I., Lutfi Firdaus, M. (2019). Silver Nanoparticles as a Biocide for Water Treatment Applications. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_18

Download citation

Publish with us

Policies and ethics