Skip to main content

Nanocomposite Materials Based on TiO2/Clay for Wastewater Treatment

  • Chapter
  • First Online:
Book cover Advanced Research in Nanosciences for Water Technology

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

The increase of global populations and rapid industrialization goes hand in hand with the intensification of the pressure of water supplies. Consequently, an extensive remediation is required as soon as possible before it would get worst in the future decades. In this regard, an extreme attention has been drawn toward the use of nanotechnology because of its effectiveness in using nanomaterials and nanostructured hybrid materials for water purification. Cotemporally, it reduces the use of chemicals and impinge on the environment.

In this chapter, we shall emphasize the different materials used in water purification laying stress on the advantages and multifunctions of the bionanocomposite and clays in the adsorption process as well as the dioxide of titanium particles in the photocatalysis, not to forget highlighting their synergistic assembling in the decontamination of water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abollino O, Aceto M, Malandrino M et al (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37:1619–1627

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330

    Article  CAS  PubMed  Google Scholar 

  • Akpan UG, Hameed BH (2010) The advancements in sol-gel method of doped-TiO2 photocatalysts. Appl Catal A 375:1–11

    Article  CAS  Google Scholar 

  • Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J Phys Chem 99:9882–9885

    Article  CAS  Google Scholar 

  • Anpo M (2000) Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl Chem 72:1787–1792

    Article  CAS  Google Scholar 

  • Arimitsu N, Nakajima A, Kameshima Y et al (2007) Preparation of cobalt-titanium dioxide nanocomposite films by combining inverse micelle method and plasma treatment. Mater Lett 61:2173–2177

    Article  CAS  Google Scholar 

  • Babelon P, Dequiedt AS, Mostefa-Sba H et al (1998) SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films 322:63–67

    Article  CAS  Google Scholar 

  • Bandara J, Hadapangoda CC, Jayasekera WG (2004) TiO2/MgO composite photocatalyst: the role of MgO in photoinduced charge carrier separation. Appl Catal B 50:83–88

    Article  CAS  Google Scholar 

  • Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science. In: Developments in clay science. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  • Bhattacharyya A, Kawi S, Ray MB (2004) Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catal Today 98:431–439

    Article  CAS  Google Scholar 

  • Bickley RI, Gonzalez-Carreno T, Lees JS et al (1991) A structural investigation of titanium dioxide photocatalysts. J Solid State Chem 92:178–190

    Article  CAS  Google Scholar 

  • Bineesh KV, Kim DK, Kim MIL, Park DW (2011) Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia. Appl Clay Sci 53:204–211

    Article  CAS  Google Scholar 

  • Blackburn RS, Richard S (2005) Biodegradable and sustainable fibres. Woodhead Publishing in association with the Textile Institute

    Google Scholar 

  • Bleiman N, Mishael YG (2010) Selenium removal from drinking water by adsorption to chitosan – clay composites and oxides: batch and columns tests. J Hazard Mater 183:590–595

    Article  CAS  PubMed  Google Scholar 

  • Bradley DC (2001) Alkoxo and aryloxo derivatives of metals. Academic Press, San Diego

    Google Scholar 

  • Callister W, Rethwisch D (2007) Materials science and engineering. Materials Science and Engineering 94. https://doi.org/10.1016/0025-5416(87)90343-0

    Article  Google Scholar 

  • Dambournet D, Belharouak I, Amine K (2010) Tailored preparation methods of TiO2 Anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem Mater 22:1173–1179

    Article  CAS  Google Scholar 

  • Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309–1319

    Article  CAS  Google Scholar 

  • Dent AJ, Ramsay JDF, Swanton SW (1992) An EXAFS study of uranyl ion in solution and sorbed onto silica and montmorillonite clay colloids. J Colloid Interface Sci 150:45–60

    Article  CAS  Google Scholar 

  • Devi RS, Venckatesh DR, Sivaraj DR (2014) Synthesis of titanium dioxide nanoparticles by sol-gel technique. Int J Innov Res Sci Eng Tech 03:15206–15211

    Article  Google Scholar 

  • Djurišić AB, Leung YH, Ching Ng AM (2014) Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater Horiz 1:400–410

    Article  CAS  Google Scholar 

  • El-Sheikh AH, Newman AP, Al-Daffaee H et al (2004) Deposition of anatase on the surface of activated carbon. Surf Coat Tech 187:284–292

    Article  CAS  Google Scholar 

  • Grim RE (1930) Clay mineralogy: the clay mineral composition of soils and clays is providing an understanding of their properties. Science 135(3507):890–898

    Article  CAS  PubMed  Google Scholar 

  • Guggenheim PACS (2001) Clays and clay minerals. National Academy of Sciences--National Research Council

    Google Scholar 

  • Herrmann J (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129

    Article  CAS  Google Scholar 

  • Higarashi MM, Jardim WF (2002) Remediation of pesticide contaminated soil using TiO2 mediated by solar light. Catal Today 76:201–207

    Article  CAS  Google Scholar 

  • Hirai T, Suzuki K, Komasawa I (2001) Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles. J Colloid Interface Sci 244:262–265

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Comp Mater 40:1511–1575

    Article  CAS  Google Scholar 

  • Inagaki S, Fukushima Y, Miyata M (1995) Inclusion polymerization of isoprene in the channels of sepiolite. Res Chem Intermed 21:167–180

    Article  CAS  Google Scholar 

  • Inoue S, Muto A, Kudou H, Ono T (2004) Preparation of novel titania support by applying the multi-gelation method for ultra-deep HDS of diesel oil. Appl Catal A 269:7–12

    Article  CAS  Google Scholar 

  • Kara M, Yuzer H, Sabah E, Celik MS (2003) Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res 37:224–232

    Article  CAS  PubMed  Google Scholar 

  • Kim KD, Kim HT (2002) Synthesis of titanium dioxide nanoparticles using a continuous reaction method. Colloid Surf A 207:263–269

    Article  CAS  Google Scholar 

  • Kim BH, Lee JY, Choa YH et al (2004) Preparation of TiO2 thin film by liquid sprayed mist CVD method. Mater Sci Eng B Adv 107:289–294

    Article  CAS  Google Scholar 

  • Kirk-Othmer (2007) Bionanocomposites. In: Encyclopedia of chemical technology. Wiley & Sons, Inc, Hoboken, pp 1–28

    Google Scholar 

  • Kobayakawa K, Nakazawa Y, Ikeda M et al (1990) Influence of the density of surface hydroxyl-groups on Tio2 photocatalytic activities. Phys Chem Chem Phys 94:1439–1443

    CAS  Google Scholar 

  • Konta J (1995) Clay and man: clay raw materials in the service of man. Appl Clay Sci 10:275–335

    Article  CAS  Google Scholar 

  • Lee S, Nishida K, Otaki M, Ohgaki S (1997b) Photocatalytic inactivation of phage Qβ by immobilized titanium dioxide mediated photocatalyst. Water Sci Technol 35(11–12):101–106

    Article  CAS  Google Scholar 

  • Lee JH, Song DI, Jeon YW (1997a) Adsorption of organic phenols onto dual organic cation montmorillonite from water. Sep Sci Technol 32:1975–1992

    Article  CAS  Google Scholar 

  • Lee YC, Yang JW (2012) Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J Ind Eng Chem 18:1178–1185

    Article  CAS  Google Scholar 

  • Lepore GP, Persaud L, Langford CH (1996) Supporting titanium dioxide photocatalysts on silica gel and hydrophobically modified silica gel. J Photochem Photobiol A 98:103–111

    Article  CAS  Google Scholar 

  • Li Y, Demopoulos GP (2008) Precipitation of nanosized titanium dioxide from aqueous titanium(IV) chloride solutions by neutralization with MgO. Hydrometallurgy 90:26–33

    Article  CAS  Google Scholar 

  • Miao L, Tanemura S, Toh S et al (2004) Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol-gel template process. J Cryst Growth 264:246–252

    Article  CAS  Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35

    Article  CAS  Google Scholar 

  • Mostafa TB, Darwish AS (2014) An approach toward construction of tuned chitosan/polyaniline/metal hybrid nanocomposites for treatment of meat industry wastewater. Chem Eng J 243:326–339

    Article  CAS  Google Scholar 

  • Nayak PS, Singh BK (2007) Instrumental characterization of clay by XRF, XRD and FTIR. Springer-Verlag, New York

    Book  Google Scholar 

  • Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32:364–365

    Article  CAS  Google Scholar 

  • Ohtani B, Ogawa Y, Nishimoto S (1997) Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B 101:3746–3752

    Article  CAS  Google Scholar 

  • Olad A (2011) Polymer/clay nanocomposites. In: Advances in diverse industrial applications of nanocomposites. InTech, Croatia, p 64

    Google Scholar 

  • Patil KR, Sathaye SD, Khollam YB et al (2003) Preparation of TiO2 thin films by modified spin-coating method using an aqueous precursor. Mater Lett 57:1775–1780

    Article  CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Progress in Polymer Science 33(12):1119–1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  • Peng F, Cai L, Yu H et al (2008) Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J Solid State Chem 181:130–136

    Article  CAS  Google Scholar 

  • Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles. Elsevier Inc., Amsterdam

    Book  Google Scholar 

  • Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011

    Article  CAS  PubMed  Google Scholar 

  • Robert D, Malato S (2002) Solar photocatalysis: a clean process for water detoxification. Sci Total Environ 291:85–97

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Roy RA, Roy DM (1986) Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Mater Lett 4:323–328. https://doi.org/10.1016/0167-577X(86)90063-7

    Article  Google Scholar 

  • Ruiz-hitzky E (2001) Molecular access to intracrystalline tunnels of sepiolite. J Mater Chem 11:86–91. https://doi.org/10.1039/b003197f

    Article  CAS  Google Scholar 

  • Rytwo G (2012) The use of clay-polymer nanocomposites in wastewater pretreatment. Sci World J 2012:498503

    Article  CAS  Google Scholar 

  • Rytwo G, Lavi R, Rytwo Y et al (2013) Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites. Sci Total Environ 442:134–142

    Article  CAS  PubMed  Google Scholar 

  • Sampath S, Uchida H, Yoneyama H (1994) Photocatalytic degradation of gaseous pyridine over zeolite-supported titanium dioxide. J Catal 149:189–194

    Article  CAS  Google Scholar 

  • Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites: a small part of the story. Kluwer Academic Publishers/Plenum Publishers, Boston, MA

    Google Scholar 

  • Sclafani A, Herrmann JM (1996) Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J Phys Chem 100:13655–13661

    Article  CAS  Google Scholar 

  • Senevirathna MKI, Pitigala PKDDP, Tennakone K (2005) Water photoreduction with Cu2O quantum dots on TiO2 nano-particles. J Photochem Photobiol A 171:257–259

    Article  CAS  Google Scholar 

  • Sethi D, Sakthivel R (2017) ZnO/TiO2 composites for photocatalytic inactivation of Escherichia coli. J Photochem Photobiol B 168:117–123

    Article  CAS  PubMed  Google Scholar 

  • Shawky HA (2010) Improvement of water quality using alginate/montmorillonite composite beads. Polym Polym Compos 21:449–456

    Google Scholar 

  • Shchipunov Y (2012) Bionanocomposites: green sustainable materials for the near future. Pure and Applied Chemistry 84(12):2579–2607. https://doi.org/10.1351/PAC-CON-12-05-04

    Article  CAS  Google Scholar 

  • Tarr MA (2003) Chemical degradation methods for wastes and pollutants: environmental and industrial applications. M. Dekker, New York

    Book  Google Scholar 

  • Thomas S, Stephen R (2010) Rubber nanocomposites: preparation, properties, and applications. John Wiley & Sons, Singapore

    Book  Google Scholar 

  • Torimoto T, Okawa Y, Takeda N, Yoneyama H (1997) Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane. J Photochem Photobiol A 103:153–157

    Article  CAS  Google Scholar 

  • Ugurlu M, Gurses A, Yalcin M, Dogar C (2005) Removal of phenolic and lignin compounds from bleached Kraft mill effluent by Fly ash and Sepiolite. Adsorption 11:87–97

    Article  CAS  Google Scholar 

  • Varghese OK, Gong D, Paulose M et al (2003) Extreme changes in the electrical resistance of Titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  CAS  Google Scholar 

  • Wang X, Du Y, Jianhong Yang YTJL (2015) Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. Clin Exp Rheumatol 33:97–103

    CAS  Google Scholar 

  • Wang L, Wang A (2007) Adsorption characteristics of Congo red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147:979–985

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Yang J, Gong Y, Hong H (2013) Tunable synthesis of TiO2/SrO core/shell nanowire arrays with enhanced photocatalytic activity. Mater Res Bull 48:21–24

    Article  CAS  Google Scholar 

  • Wen B, Liu C, Liu Y (2005) Depositional characteristics of metal coating on single-crystal TiO2 nanowires. J Phys Chem B 109:12372–12375

    Article  CAS  PubMed  Google Scholar 

  • Wu CI, Huang JW, Wen YL et al (2008) Preparation of TiO2 nanoparticles by supercritical carbon dioxide. Mater Lett 62:1923–1926

    Article  CAS  Google Scholar 

  • Wu JM, Qi B (2007) Low-temperature growth of a nitrogen-doped titania nanoflower film and its ability to assist photodegradation of rhodamine B in water. J Phys Chem C 111:666–673

    Article  CAS  Google Scholar 

  • Yi GR, Moon JH, Yang SM (2001) Ordered macroporous particles by colloidal templating. Chem Mater 13:2613–2618

    Article  CAS  Google Scholar 

  • Zhao W, Ma W, Chen C et al (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J Am Chem Soc 126:4782–4783

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Liu Y, Li L et al (2007) A new nanocomposite biomedical material of polymer/Clay-Cts-Ag nanocomposites. Curr Appl Phys 7:58–62

    Article  Google Scholar 

  • Zhu J, Deng Z, Chen F et al (2006) Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B 62:329–335

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang L, Gao C, Cao L (2000) The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor. J Mater Sci 35:4049–4054

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Bouhfid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chkirida, S., Zari, N., Qaiss, A.E.K., Bouhfid, R. (2019). Nanocomposite Materials Based on TiO2/Clay for Wastewater Treatment. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_16

Download citation

Publish with us

Policies and ethics