Skip to main content

Oxide Nanomaterials for Efficient Water Treatment

  • Chapter
  • First Online:
  • 841 Accesses

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

The growing demand for potable water has been a major challenge to all countries. Quick and efficient water treatment methods are the primary requirements to avoid day zero. Since the Bronze Age several water treatment methods are in use. The advent of nanomaterials has provided us new treatment methods. Nanomaterials could act as energy savers and efficient water purifiers with respect to water treatment. Among the various class of nanomaterials Oxide nanomaterials have attracted great attention in all research areas due to its low cost easy preparatory methods and less toxicity. This chapter explains the various oxide nanomaterials used in water treatment like Alumina, Zinc Oxide, Titanium dioxide, and Silica.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bartram J, Brocklehurst C, Fisher MB, Luyendijk R, Hossain R, Wardlaw T, Gordon B (2014) Global monitoring of water supply and sanitation: history methods and future challenges. Int J Environ Res Public Health 11(8):8137–8165

    Article  Google Scholar 

  • Brame J, Li Q, Alvarez PJJ (2011) Nanotechnology enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci Technol 22:618–624

    Article  CAS  Google Scholar 

  • Dankovich TA, Smith JA (2014) Incorporation of copper nanoparticles into paper for point of use water purification. Water Res 63:245–251

    Article  CAS  Google Scholar 

  • Das R, Ali Md E, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalina 336:97–109

    Article  CAS  Google Scholar 

  • Fawell J, Nieuwhuijsen MJ (2003) Contaminants in drinking water. Br Med Bull 68:199–208

    Article  CAS  Google Scholar 

  • Hu J, Chen G, Lo IM (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536

    Article  CAS  Google Scholar 

  • Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J Environ Manag 162:306–325

    Article  CAS  Google Scholar 

  • Johnson GA (1914) Present day water filtration practice. J Am Water Work Assoc 1:31–80

    Article  CAS  Google Scholar 

  • Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium oxide and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10:1–69

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  Google Scholar 

  • Li YH, Wang S, Cao A, Zhao D, Zhang X, Xu C, Luan Z, Ruan D, Liang J, Wu D, Wei B (2001) Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 350:412–416

    Article  CAS  Google Scholar 

  • Li C, Zhang Y, Wang X, Zhao J, Chen W (2011) Removal and recovery of lead (II) ions from contaminated licorice extracts using oxidized multi-walled carbon nanotubes. J Nanosci Nanotech 11:9731–9736

    Article  CAS  Google Scholar 

  • Mellor JE, Kallman E, Craver VO, Smith JA (2015) Comparison of three household water treatment technologies in San Mateo Ixtatan Guatemala. J Environ Eng 141(5):04014085. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000914

    Article  CAS  Google Scholar 

  • Mondal SG (2015) A review on adsorbents used for defluoridation of drinking water. Rev Environ Sci Biotechnol 14(2):195–210

    Article  CAS  Google Scholar 

  • Mwabi JK, Adeyemo FE, Mahlangu TO, Mamba BB, Brouckaert BM, Swartz CD, Offringa G, Mpenyana-Monyatsi L, Momba MNB (2011) Household water treatment systems: a solution to the production of safe drinking water by the low-income communities of Southern Africa. Phys Chem Earth 36:1120–1128

    Article  Google Scholar 

  • Pendergast MTM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971

    Article  CAS  Google Scholar 

  • Petrusevski B, Sharma S, Van der Meer WG, Kruis F, Khan M, Barua M, Schippers JC (2008) Four years of development and field-testing of IHE arsenic removal family filter in rural Bangladesh. Water Sci Tech 58(1):53–58

    Article  CAS  Google Scholar 

  • Prathna TC, Chandrasekaran N, Mukherjee A (2011) Studies on aggregation behaviour of silver nanoparticles in aqueous matrices: effect of surface functionalization and matrix composition. Colloids Surf A Physicochem Eng Aspects 390:216–224

    Article  CAS  Google Scholar 

  • Prathna TC, Sharma S, Kennedy M (2018) Nanoparticles in household level water treatment: an overview. Sep Purif Technol 199:260. https://doi.org/10.1016/j.seppur.2018.01.061

    Article  CAS  Google Scholar 

  • Pruss-Ustun A, Bartram J, Clasen T, Colford JM, Cumming O, Curtis V, Bonjour S, De Dangour AD, France J, Fewtrell L, Freeman MC (2014) Burden of disease from inadequate water sanitation and hygiene in low and middle income settings: a retrospective analysis of data from 145 countries. Trop Med Int Health 19:894–905

    Article  Google Scholar 

  • Qiao J, Cui Z, Sun Y, Hu Q Guan X (2014) Simultaneous removal of arsenate and fluoride from water by Al-Fe hydroxides. Front Environ Sci Eng 8:169–179

    Article  CAS  Google Scholar 

  • Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mater 3:610–614

    Article  CAS  Google Scholar 

  • Suja GP, Pandit AB, Process modeling for estimation of colloidal aluminium in alum treated water during defluoridation. In: International Conference on Environmental Engineering and Applications (ICEEA 2010). p 103–106

    Google Scholar 

  • Teutli-Sequeira A, Riose MM, Linares H (2014) Comparison of aluminum modified natural material in the removal of fluoride ions. J Colloid Interface Sci 418:254–260

    Article  CAS  Google Scholar 

  • Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X (2005) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nano sheets. Dalton Trans 40:10945–10952

    Article  Google Scholar 

  • Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ (2007) 3D flower like ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater 19:1648–1655

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self- assembled 3D flowerlike Iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagappan Subramaniyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Subramaniyan, A. (2019). Oxide Nanomaterials for Efficient Water Treatment. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_13

Download citation

Publish with us

Policies and ethics