Skip to main content

Application of Nano-Photocatalysts for Degradation and Disinfection of Wastewater

  • Chapter
  • First Online:
Advanced Research in Nanosciences for Water Technology

Abstract

Photocatalytic disinfection was studied by many researchers globally due to its capability of degrading microorganisms in wastewater. Many studies were reported on photocatalytic disinfection but still there was a gap on disinfection mechanisms and models. Nano-photocatalysts were effectively used in treatment process than conventional methods. The utilization of nano-photocatalysts was a phenomenal choice for wastewater treatment since wastewater can be reused; this in turn decreases the water necessity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeleye A-S, Conway J-R, Garner K, Huang Y, Su Y, Keller A-A (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Akhavan O (2009) Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J Colloid Interface Sci 336:117–124

    Article  CAS  Google Scholar 

  • Barakat M-A, Ramadan M-H, Alghamdi M-A, Al-Garny S-S, Woodcock H-L, Kuhn J-N (2013) Remediation of Cu (II), Ni (II), and Cr (III) ions from simulated wastewater by dendrimer/titania composites. J Environ Manag 117:50–57

    Article  CAS  Google Scholar 

  • Bilal M, Iqbal M, Hu H, Zhang X (2016) Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes. Water Sci Technol 73:2332–2344

    Article  CAS  Google Scholar 

  • Booshehri A-Y, Polo-Lopez M, Castro-Alférez M, He P, Xu R, Rong W, Malato S, Fernández-Ibáñez P (2017) Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar compound parabolic collector for inactivation of pathogens in well water and secondary effluents. Catal Today 281:124–134

    Article  CAS  Google Scholar 

  • Caballero L, Whitehead K-A, Allen N-S, Verran J (2009) Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A 202:92–98

    Article  CAS  Google Scholar 

  • Chandrakar R-K, Baghel R-N, Chandra V-K, Chandra B-P (2015) Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles. Superlattices Microstruct 86:256–269

    Article  CAS  Google Scholar 

  • Chen C-Z, Zhou Z-W (2004) The preparation of nano-ZnO and its middle infrared ultraviolet visible light absorption properties. J Funct Mater 35:97–98

    CAS  Google Scholar 

  • Coutinho C-A, Gupta V-K (2009) Photocatalytic degradation of methyl orange using polymer titania microcomposites. J Colloid Interface Sci 333:457–464

    Article  CAS  Google Scholar 

  • Dai J, Chi Wang H, Wang Y, Zhao J (2016) Immobilization of laccase from Pleurotus ostreatus on magnetic separable SiO2 support and excellent activity towards Azo dye decolorization. J Environ Chem Eng 4:2585–2591

    Article  CAS  Google Scholar 

  • Dalrymple O-K, Tefanakos E-S, Trotz M-A, Yogi Goswami D (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B Environ 98:27–38

    Article  CAS  Google Scholar 

  • Demchick P, Koch A-L (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J Bacteriol 178:768–773

    Article  CAS  Google Scholar 

  • Dos Santos A-B, Cervantes F-J, Van Lier J-B (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  CAS  Google Scholar 

  • Dubrac S, Touati D (2002) Fur-mediated transcriptional and posttranscriptional regulation of FeSOD expression in Escherichia coli. Microbiology 148:147–156

    Article  CAS  Google Scholar 

  • Dutta A-K, Maji S-K, Adhikary B (2014) γ-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mat Res Bull 49:28–34

    Article  CAS  Google Scholar 

  • Eskizeybek V, Sari F, Gulce H, Gulce A, Avci A (2012) Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Appl Catal B Environ 119:197–206

    Article  Google Scholar 

  • French R-A, Jacobson A-R, Kim B, Isley S-L, Penn R-L, Baveye P-C (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359

    Article  CAS  Google Scholar 

  • Gogniat G, Dukan S (2007) TiO2 photocatalysis causes DNA damage via Fenton reaction-generated hydroxyl radicals during the recovery period. Appl Environ Microbiol 73:7740–7743

    Article  CAS  Google Scholar 

  • Greist H-T, Hingorani S-K, Kelley K, Goswami D-Y (2002) Using scanning electron microscopy to visualize photocatalytic mineralization of airborne microorganisms, In: Indoor Air 2002, 9th International Conference on Indoor Air Quality and Climate, Monterey, CA, 2002

    Google Scholar 

  • Gupta V-K, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf A-S-H, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Develop 34:195

    Article  Google Scholar 

  • Hayat K, Gondal M-A, Khaled M-M, Ahmed S, Shemsi A-M (2011) Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water. Appl Catal A General 393:122–129

    Article  CAS  Google Scholar 

  • Hidaka H, Horikoshi S, Ajisaka K, Zhao J, Serpone N (1997a) Photoelectrochemical decomposition of amino acids on a TiO2/OTE particulate film electrode. J Photochem Photobiol 108:197–205

    Article  CAS  Google Scholar 

  • Hidaka H, Horikoshi S, Serpone N, Knowland J (1997b) In vitro photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation. J Photochem Photobiol A 111:205–213

    Article  CAS  Google Scholar 

  • Huang N-P, Min-hua X, Yuan C-W, Rui-Rong Y (1997) The study of the photokilling effect and mechanism of ultrafine TiO2 particles on U937 cells. Photobiol A 108:229–233

    Article  CAS  Google Scholar 

  • Jamal A, Rahman M-M, Khan S-B, Faisal M, Akhtar K, Rub M-A, Asiri A-M, Al-Youbi A-O (2012) Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants. Appl Surface Sci 261:52–58

    Article  CAS  Google Scholar 

  • Jiang W, Kim B-Y, Rutka J-T, Chan W-C (2008) Nanoparticle-mediated cellular response is size dependent. Nat Nanotechnol 3:145–150

    Article  CAS  Google Scholar 

  • Kubacka A, Ferrer M, Cerrada M-L, Serrano C, Sánchez-Chaves M, Fernández García M (2009) Boosting TiO2-anatase antimicrobial activity: polymer-oxide thin films. Appl Catal B 89:441–447

    Article  CAS  Google Scholar 

  • Kühn K-P, Chaberny I-F, Massholder K, Stickler M, Benz V-W, Sonntag H-G (2003) Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere 53:71–77

    Article  Google Scholar 

  • Lade H, Govindwar S, Paul D (2015) Mineralization and detoxification of the carcinogenic Azo dye Congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. Int J Environ Res Public Health 12:6894–6918

    Article  CAS  Google Scholar 

  • Li W, Zhang Y, Tian G, Xie S, Xu Q, Wang L, Tian J, Bu Y (2016) Fabrication of graphene- modified nano-sized red phosphorus for enhanced photocatalytic performance. J Mol Catal A Chem 423:356–364

    Article  CAS  Google Scholar 

  • Lin S-T, Thirumavalavan M, Jiang T-Y, Lee J-F (2014) Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes. Carbohydr Polym 105:1–9

    Article  CAS  Google Scholar 

  • Lu Z-X, Zhou L, Zhang Z-L, Shi W-L, Xie Z-X, Xie H-Y (2003) Cell damage induced by photocatalysis of TiO2 thin films. Langmuir 19:8765–8768

    Article  CAS  Google Scholar 

  • Magdigan M-T, Martinko J-M (2006) Brock biology of microorganisms, 11th edn. Pearson Education, Inc., Upper Saddle River, NJ

    Google Scholar 

  • Magnuson K, Jackowski S, Rock C-O, Cronan J-E Jr (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Mol Biol Rev 57:522–542

    CAS  Google Scholar 

  • Mailander V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10:2379–2400

    Article  Google Scholar 

  • Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P (2014) Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf B Biointerfaces 115:359–367

    Article  CAS  Google Scholar 

  • Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214

    Article  CAS  Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A 108:1–35

    Article  CAS  Google Scholar 

  • Ni M, Leung M-K, Leung D-Y, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen M-J, Toledano M-B, Eaton N-E, Fawell J, Elliott P (2000) Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 57:73–85

    Article  CAS  Google Scholar 

  • Oleary W-M (1962) The fatty acids of bacteria. Bacteriol Rev 26:421–435

    CAS  Google Scholar 

  • Pal A, Pehkonen S-O, Yu L-E, Ray M-B (2007) Photocatalytic inactivation of gram-positive and gram-negative bacteria using fluorescent light. J Photochem Photobiol A 186:335–341

    Article  CAS  Google Scholar 

  • Qu X, Alvarez P-J, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Ramírez-Montoya L-A, Hernández-Montoya V, Montes-Morán M-A, Jáuregui-Rincón J, Cervantes F-J (2015) Decolorization of dyes with different molecular properties using free and immobilized laccases from Trametes versicolor. J Mol Liq 212:30–37

    Article  Google Scholar 

  • Rao M-A, Scelza R, Acevedo F, Diez M-C, Gianfreda L (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145–162

    Article  CAS  Google Scholar 

  • Reddy M-P, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Sathishkumar P, Kamala-Kannan S, Cho M, Kim J-S, Hadibarata T, Salim M-R, Oh B-T (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120

    Article  CAS  Google Scholar 

  • Stefan I-L, Irwin F (1999) Superoxide and iron: partners in crime. IUBMB Life 48:157–161

    Article  Google Scholar 

  • Sunnotel O, Verdoold R, Dunlop P-S-M, Snelling W-J, Lowery C-J, Dooley J-S-G (2010) Photocatalytic inactivation of Cryptosporidium parvum on nanostructured titanium dioxide films. J Water Health 8:83–91

    Article  CAS  Google Scholar 

  • Tran T-H, Nosaka A-Y, Nosaka Y (2006) Fourier transform reflection−absorption IR spectroscopy study of Formate adsorption on TiO2. J Phys Chem B 110:25525–25531

    Article  CAS  Google Scholar 

  • Vinodgopal K, Kamat P-V (1992) Photochemistry on surfaces: photodegradation of 1,3- diphenylisobenzofuran over metal oxide particles. J Phys Chem 96:5053–5059

    Article  CAS  Google Scholar 

  • Yang X, Wang Y (2008) Photocatalytic effect on plasmid DNA damage under different UV irradiation time. Build Environ 43:253–257

    Article  Google Scholar 

  • Yurdakal S, Loddo V, Bayarri Ferrer B, Palmisano G, Augugliaro V, Gimenez Farreras J (2007) Optical properties of TiO2 suspensions: influence of pH and powder concentration on mean particle size. Ind Eng Chem Res 46:7620–7626

    Article  CAS  Google Scholar 

  • Zhu H, Jiang R, Xiao L, Chang Y, Guan Y, Li X, Zeng G (2009) Photocatalytic decolorization and degradation of Congo red on innovative crosslinked chitosan/nano CdS composite catalyst under visible light irradiation. J Hazard Mater 169:933–940

    Article  CAS  Google Scholar 

  • Zucca P, Neves C, Simões M-M, Neves M-D-G-P, Cocco G, Sanjust E (2016) Immobilized lignin peroxidase-like metalloporphyrins as reusable catalysts in oxidative bleaching of industrial dyes. Molecules 21:964

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannappan Panchamoorthy Gopinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arun, J., Felix, V., Monica, M.J., Gopinath, K.P. (2019). Application of Nano-Photocatalysts for Degradation and Disinfection of Wastewater. In: Prasad, R., Karchiyappan, T. (eds) Advanced Research in Nanosciences for Water Technology. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02381-2_11

Download citation

Publish with us

Policies and ethics