Skip to main content

Part of the book series: Springer Mineralogy ((MINERAL))

  • 516 Accesses

Abstract

The kaolin group (kandite group) consists of four polymorphs kaolinite , dickite , nacrite , and halloysite . Whereas the first three minerals are identified by different stacking orders of the clay layers, halloysite in contrast is the only mineral that contains water between its clay layers and as a result has a tendency to form tubular crystals. Kaolinite is found in soils, in particular lateritic soils, as well as in sedimentary rocks up till late diagenesis (with dickite) up to 200 °C and hydrostatic pressures up to 300–400 bars and hydrothermal deposits. Dickite is generally related to conditions of higher temperature and pressure and mainly occurs in hydrothermal or sedimentary rocks. Nacrite is the rarest of the four polymorphs and occurs mostly in hydrothermal environments. The structure of kaolinite consists of 1:1 layers (one octahedral Al sheet and one tetrahedral Si sheet) regularly stacked horizontally with each layer translated by –a/3. In contrast, the structures of dickite and nacrite can be described as two different regular stackings of two-layer units, each layer being related to neighbouring layers by a glide plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM (1983) Hydrogen atom positions in kaolinite by neutron profile refinement. Clay Clay Miner 31:352–356

    Article  Google Scholar 

  • Akiba E, Hayakawa H, Hayashi S, Miyawaki R, Tomura S, Shibasaki Y, Izumi F, Asano H, Kamiyama T (1997) Structure refinement of synthetic deuterated kaolinite by Rietveld analysis using time-of-fligt neuton powder diffraction data. Clay Clay Miner 45:781–788

    Article  Google Scholar 

  • Bailey SW (1963) Polymorphism of the kaolin minerals. Am Mineral 48:1196–1209

    Google Scholar 

  • Bailey SW (1969) Polytypism of trioctahedral 1:1 layer silicates. Clay Clay Miner 17:355–371

    Article  Google Scholar 

  • Bailey SW (1989) Halloysite-a critical assessment. Paper presented at the Proceedings of the 9th International Clay Conference, Strasbourg, France

    Google Scholar 

  • Balan E, Lazzeri M, Delaittre S, Méheut M, Refson K, Winkler B (2007) Anharmonicity of inner-OH stretching modes in hydrous phyllosilicates: assessment from first-principles frozen-phonon calculations. Phys Chem Miner 34:621–625

    Article  Google Scholar 

  • Beaufort D, Cassagnabere A, Petit S, Son B, Berger G, Lacharpagne JC, Johansen H (1998) Kaolinite-to-dickite reaction in sandstone reservoirs. Clay Miner 33:297–316

    Article  Google Scholar 

  • Benco L, Tunega D, Hafner J, Lischka H (2001a) Orientation of OH groups in kaolinite and dickite: ab initio molecular dynamics study. Am Mineral 86:1057–1065

    Article  Google Scholar 

  • Benco L, Tunega D, Hafner J, Lischka H (2001b) Upper limit of the O-H...O hydrogen bond. Ab initio study of the kaolinite structure. J Phys Chem B 105:10812–10817

    Article  Google Scholar 

  • Bish DL (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clay Clay Miner 41:738–744

    Article  Google Scholar 

  • Bish DL, Von Dreele RB (1989) Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clay Clay Miner 37:289–296

    Article  Google Scholar 

  • Blount AM, Threadgold IM, Bailey SW (1969) Refinement of the crystal structure of nacrite. Clay Clay Miner 17:185–194

    Article  Google Scholar 

  • Bougeard D, Smirnov KS, Geidel E (2000) Vibrational spectra and structure of kaolinite: a computer simulation model. J Phys Chem B 104:9210–9217

    Article  Google Scholar 

  • Brindley GW, Nakahira M (1958) Further consideration of the crystal structure of kaolinite. Mineral Mag 31:781–786

    Google Scholar 

  • Brindley GW, Robinson K (1945) Structure of kaolinite. Nature 156:661–663

    Article  Google Scholar 

  • Brindley GW, Robinson K (1946) The structure of kaolinite. Mineral Mag 27:242–253

    Google Scholar 

  • Castro EAS, Martin JBL (2005) Theoretical study of kaolinite. Int J Quantum Chem 103:550–556

    Article  Google Scholar 

  • Collins DR, Catlow CRA (1991) Energy minimised hydrogen atom positions of kaolinite. Acta Cryst B47:678–682

    Article  Google Scholar 

  • Costanzo PM, Giese RF (1985) Dehydration of synthetic hydrated kaolinites: a model for the dehydration of halloysite(10 Å). Clay Clay Miner 33:415–423

    Article  Google Scholar 

  • Ehrenberg SN, Aagaard P, Wilson MJ, Fraser AR, Duthrie DML (1993) Depth dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Miner 28:325–352

    Article  Google Scholar 

  • Fiore S, Dumontet S, Huertas FJ, Pasquale V (2011) Bacteria-induced crystallization of kaolinite. Appl Clay Sci 53:566–571

    Article  Google Scholar 

  • Giese RF, Datta P (1973) Hydroxyl orientation in kaolinite, dickite and nacrite. Am Mineral 58:471–479

    Google Scholar 

  • Giese RF Jr (1982) Theoretical studies of the kaolin minerals: electrostatic calculations. Bull Mineral 105:417–424

    Google Scholar 

  • Gruner JW (1932) The crystal structure of kaolinite. Z Kristallogr 83:75–88

    Google Scholar 

  • Hendricks SB (1936) Concerning the crystal structure of kaolinite Al2O3 .2SiO2 .2H2O, and the composition of anauxite. Z Kristallogr 95:247–252

    Google Scholar 

  • Hess AC, Saunders VR (1992) Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite. J Phys Chem 96:4367–4374

    Article  Google Scholar 

  • Hobbs JD, Cygan RT, Nagy KT, Schultz PA, Sears MP (1997) All-atom ab initio minimization of the kaolinite crystal structure. Am Mineral 82:657–662

    Article  Google Scholar 

  • Huang WL, Bishop AM, Brown RW (1986) The effect of fluid/rock ratio on feldspar dissolution and illite formation under reservoir conditions. Clay Miner 21:585–601

    Article  Google Scholar 

  • Joswig W, Drits VA (1986) The orientation of the hydroxyl groups in dickite by x-ray diffraction. N Jahrb Mineral Monatsh 1986:19–22

    Google Scholar 

  • Joussein E, Petit S, Churchman GJ, Theng BKG, Righi D, Delvaux B (2005) Halloysite clay minerals – a review. Clay Miner 40:383–393

    Article  Google Scholar 

  • Keller WD (1970) Environmental aspects of clay minerals. J Sediment Petrol 40:798–813

    Google Scholar 

  • Khademi H, Arocena JM (2008) Kaolinite formation from palygorskite and sepiolite in rhizosphere soils. Clay Clay Miner 56:429–436

    Article  Google Scholar 

  • Kohyama N, Fukushima K, Fukami A (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell. Clay Clay Miner 26:25–40

    Article  Google Scholar 

  • Neder RB, Burghammer M, Grasl T, Schulz H, Bram A, Fiedler S (1999) Refinement of the kaolinite structure from single-crystal synchrotron data. Clay Clay Miner 47:487–494

    Article  Google Scholar 

  • Needham J (2004) Part 12, ceramic technology, Chemistry and Chemical Technology,. Science and Civilisation in China, vol 5. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Pauling L (1930) The structure of the chlorites. Proc Natl Acad Sci U S A 16:578–582

    Article  Google Scholar 

  • Ross CS, Kerr PF (1931) The kaolin minerals. Prof Paper US Geol Survey No. 165-E:151-176

    Google Scholar 

  • Ruiz Cruz MD, Andreo B (1996) Genesis and transformation of dickite in Permo-Triassic sediments (Betic Cordilleras, Spain). Clay Miner 31:135–152

    Article  Google Scholar 

  • Sato H, Ono K, Johnston CT, Yamagishi A (2004) First-principle study of polytype structures of 1:1 dioctahedral phyllosilicates. Am Mineral 89:1581–1585

    Article  Google Scholar 

  • Smrčok L, Gyepesova D, Chmielova M (1990) New x-ray Rietveld refinement of kaolinite from Keokuk, Iowa. Cryst Res Technol 25:105–110

    Article  Google Scholar 

  • Smrčok L, Tunega D, Ramirez-Cuesta AJ, Ivanov A, Valúchová J (2009) The combined inelastic neutron scattering (INS) and solid state DFT study of hydrogen atoms dynamics in kaolinite-dimethylsulfoxide intercalate. Clay Clay Miner 58:52–61

    Article  Google Scholar 

  • Smrčok L, Tunega D, Ramirez-Cuesta AJ, Scholtzová E (2010) The combined inelastic neutron scattering and solid state DFT study of hydrogen atoms dynamics in a highly ordered kaolinite. Phys Chem Miner 37:571–579

    Article  Google Scholar 

  • Suitch PR, Young RA (1983) Atom positions in well-ordered kaolinite. Clay Clay Miner 31:357–366

    Article  Google Scholar 

  • Teppen BJ, Rasmussen K, Bertsch PM, Miller DM, Schafer L (1997) Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. J Phys Chem B 101:1579

    Article  Google Scholar 

  • Thompson JG, Withers RL (1987) A transmission electron microscopy contribution to the structure of kaolinite. Clay Clay Miner 35:237–239

    Article  Google Scholar 

  • Thompson JG, Fitzgerald JD, Withers RL (1989) Electron diffraction evidence for C-centering of non-hydrogen atoms in kaolinite. Clay Clay Miner 37:563–565

    Article  Google Scholar 

  • Tosoni S, Doll K, Ugliengo P (2006) Hydrogen bond in layered materials: structural and vibrational properties of kaolinite by a periodic B3LYP approach. Chem Mater 18:2135–2143

    Article  Google Scholar 

  • Velde B, Barre P (2010) Plants and clay minerals: mineral and biologic interactions. Springer, Berlin

    Book  Google Scholar 

  • White CE, Provis JL, Riley DP, Kearly GJ, van Deventer JSJ (2009) What is the structure of kaolinite? Reconciling theory and experiment. J Phys Chem B 113:6756–6765

    Article  Google Scholar 

  • White CE, Kearley GJ, Provis JL, Riley DP (2013) Structure of kaolinite and influence of stacking faults: reconciling theory and experiment using inelastic neutron scattering analysis. J Chem Phys 138:194501/194501–194501/194507

    Google Scholar 

  • Young RA, Hewatt AW (1988) Verification of the triclinic crystal structure of kaolinite. Clay Clay Miner 36:225–232

    Article  Google Scholar 

  • Zheng H, Bailey SW (1994) Refinement of the nacrite structure. Clay Clay Miner 42:46–52

    Article  Google Scholar 

  • Zvyagin BB (1960) Electron-diffraction determination of the structure of kaolinite. Kristallografiya 5:32–42

    Google Scholar 

  • Zvyagin BB, Drits VA (1996) Interrelated features of structure and stacking of kaolin mineral layers. Clay Clay Miner 44:297–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kloprogge, J.(. (2019). Introduction. In: Spectroscopic Methods in the Study of Kaolin Minerals and Their Modifications. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-030-02373-7_1

Download citation

Publish with us

Policies and ethics