Skip to main content

Microalgae-Bacteria Consortia for the Removal of Phenolic Compounds from Industrial Wastewaters

  • Chapter
  • First Online:
Approaches in Bioremediation

Abstract

Phenolic compounds (PCs) of either natural or anthropogenic origin are pollutants often occurring in industrial, agricultural, or domestic wastewaters, which are toxic for living organisms even when present at concentrations lower than 1 mg/L in aquatic media. Different physicochemical or biological strategies have been designed, tested, and applied for the removal of PCs from wastewaters; biological approaches are most often preferred for their efficiency at a lower cost. The ability to remove PCs of various types of microorganisms (bacteria, archaea, fungi, and microalgae), either isolated or in consortia, has been widely described in the literature. Photobioreactors (PBRs) are a reliable and efficient technology to treat complex wastewater effluents, based on the mutualistic relationships among microalgae and bacteria. Microalgae-bacteria consortia provide a variety of advantages for wastewater treatment, since photoautotrophic microorganisms deliver O2 to heterotrophic bacteria while fixing the CO2 generated by the mineralization of organic matter, thus reducing aeration cost and greenhouse gas emissions. Since microbial communities determine the success of the biological strategies for the removal of pollutants in PBRs, different biotic and abiotic factors influencing their diversity and functions are critical and must be considered. In this chapter, we focused on the current knowledge regarding the potential of microalgae-bacteria consortia for the effective treatment of PCs in wastewaters using PBR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acikgoz E, Ozcan B (2016) Phenol biodegradation by halophilic archaea. Int Biodeterior Biodegradation 107:140–146

    Article  CAS  Google Scholar 

  • Acir IH, Guenther K (2018) Endocrine-disrupting metabolites of alkylphenol ethoxylates – a critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci Total Environ 635:1530–1546

    Article  CAS  PubMed  Google Scholar 

  • Acuña-Argüelles ME, Olguin-Lora P, Razo-Flores E (2003) Toxicity and kinetic parameters of the aerobic biodegradation of the phenol and alkylphenols by a mixed culture. Biotechnol Lett 25(7):599

    Article  Google Scholar 

  • Afreen A, Bano F, Ahmad N, Fatma T (2017) Screening and optimization of laccase from cyanobacteria with its potential in decolorization of anthraquinonic dye Remazol Brilliant Blue R. Biocatal Agric Biotechnol 10:403–410

    Article  Google Scholar 

  • Aggelis G, Iconomou D, Christou M, Bokas D, Kotzailias S, Christou G, Tsagou V, Papanikolaou S (2003) Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res 37(16):3987–3904

    Article  CAS  Google Scholar 

  • Ahn YB, Chae JC, Zylstra GJ, Häggblom MM (2009) Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini. Appl Environ Microbiol 75(13):4248–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander JT, Hai FI, Al-Aboud TM (2012) Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential. J Environ Manag 111:195–207

    Article  CAS  Google Scholar 

  • Al-Fawwaz AT, Jacob JH, Al-Wahishe TE (2016) Bioremoval capacity of phenol by green micro- algal and fungal species isolated from dry environment. Int J Sci Technol Res 5(8):155–160

    Google Scholar 

  • Ali S, Lafuente RL, Cowan DA (1998) Meta-pathway degradation of phenolics by thermophilic Bacilli. Enzym Microb Technol 23(7–8):462–468

    Article  CAS  Google Scholar 

  • Al-Khalid T, El Naas MH (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Environ Sci Technol 42:1631–1690

    Article  CAS  Google Scholar 

  • Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying Pseudomonas strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. Nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45(2):327–333

    Article  CAS  PubMed  Google Scholar 

  • Anku WW, Mamo MA, Govender PP (2017) Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. In: Soto-Hernández M, Palma-Tenango M, García-Mateos MR (eds) Phenolic compounds-natural sources, importance and applications, chapter 17. InTech Open, Croatia, pp 420–443

    Google Scholar 

  • Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota. Curr Opin Biotechnol 38:1–8

    Article  CAS  PubMed  Google Scholar 

  • Araújo M, Pimentel FB, Alves RC, Oliveira MBPP (2015) Phenolic compounds from olive mill wastes: health effects, analytical approach and application as food antioxidants. Trends Food Sci Technol 45(2):200–211

    Article  CAS  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59

    Article  CAS  PubMed  Google Scholar 

  • Arora PK, Srivastava A, Garg SK, Singh VP (2018) Recent advances in degradation of chloronitrophenols. Bioresour Technol 250:902–909

    Article  CAS  PubMed  Google Scholar 

  • Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V (2006) Kinetics of high strength phenol degradation using Bacillus brevis. J Hazard Mater B 129(1–3):216–222

    Article  CAS  Google Scholar 

  • Asha P, Nira KS, Ashok P, Edgard G, Datta M (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basha KM, Rajendran A, Thangavelu V (2010) Recent advances in the biodegradation of phenol: a review. Asian J Exp Biol Sci 1(2):219–234

    CAS  Google Scholar 

  • Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11(5):705–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bitog JP, Lee IB, Lee CG, Kim KS, Hwang HS, Hong SW, Seo IH, Kwon KS, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agric 76(2):131–147

    Article  Google Scholar 

  • Borde X, Guieysse B, Delgado O, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86(3):293–300

    Article  PubMed  Google Scholar 

  • Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D (2017) Biotic interactions as drivers of algal origin and evolution. New Phytol 216(3):670–681

    Article  CAS  PubMed  Google Scholar 

  • Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160(2–3):174–183

    Google Scholar 

  • Cai W, Li J, Zhang Z (2007) The characteristics and mechanisms of phenol biodegradation by Fusarium sp. J Hazard Mater 148:38–42

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Calderón K, González-Martínez A, Gómez-Silván C, Osorio F, Rodelas B, González-López J (2013) Archaeal diversity in biofilm technologies applied to treat urban and industrial wastewater: recent advances and future prospects. Int J Mol Sci 14:18572–18598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cañizares P, Paz R, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manag 90(1):410–420

    Article  CAS  Google Scholar 

  • Cerrone F, Barghini P, Pesciaroli C, Fenice M (2011) Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor. Chemosphere 84(2):254–259

    Article  CAS  PubMed  Google Scholar 

  • Chang JS, Show PL, Ling TC, Chen CY, Ho SH, Tan CHD, Nagarajan D, Phong WN (2017) Photobioreactors. In: Larroche C, Sanroman MA, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering: bioprocess, Bioreactors and Controls. Elsevier, Amsterdam, pp 313–352

    Chapter  Google Scholar 

  • Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7(5):323

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Zhang W, Zhang W, Yuan G, Wang H, Liu T (2017) An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants. Bioresour Technol 238:749–754

    Article  CAS  PubMed  Google Scholar 

  • Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS (2015) Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour Technol 175:578–585

    Google Scholar 

  • Christen P, Vega A, Casalot L, Simon G, Auria R (2012) Kinetics of aerobic phenol biodegradation by the acidophilic and hyper thermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J 62:56–61

    Article  CAS  Google Scholar 

  • Cordova-Villegas L, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) A short review of techniques for phenol removal from wastewater. Curr Pollut Rep 2:157–167

    Article  CAS  Google Scholar 

  • Cuéllar-Bermúdez SP, Alemán-Nava GS, Chandra R, Garcia-Perez JS, Contreras-Angulo JR, Markou G, Muylaert K, Rittmann BE, Parra-Saldivar R (2017) Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res 24(Part B):438–449

    Article  Google Scholar 

  • Cui Y, Liu XY, Chung TS, Weber M, Staudt C, Maletzko C (2016) Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO). Water Res 91:104–114

    Article  CAS  PubMed  Google Scholar 

  • Das DP, Parida K, De BR (2005) Photo-oxidation of phenol over titania pillared zirconium phosphate and titanium phosphate. J Mol Catal A Chem 240(1–2):1–6

    CAS  Google Scholar 

  • Das B, Mandal TK, Patra S (2015) A comprehensive study on Chlorella pyrenoidosa for phenol degradation and its potential applicability as biodiesel feedstock and animal feed. Appl Biochem Biotechnol 176(5):1382–1401

    Article  CAS  PubMed  Google Scholar 

  • Dayana Priyadharshini S, Bakthavatsalam AK (2017a) Phycoremediation of phenolic effluent of a coal gasification plant by Chlorella pyrenoidosa. Process Saf Environ Prot 111:31–39

    Article  CAS  Google Scholar 

  • Dayana Priyadharshini S, Bakthavatsalam AK (2017b) Effect of nutrients on Chlorella pyrenoidosa for treatment of phenolic effluent of coal gasification plant. Environ Sci Pollut Res 24(15):13594–13603

    Article  CAS  Google Scholar 

  • de Vree JH, Bosma R, Janssen M, Barbosa MJ, Wijffels RH (2015) Comparison of four outdoor pilot-scale photobioreactors. Biotechnol Biofuels 8:215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De-Bashan LE, Antoun H, Bashan Y (2008) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44(4):938–947

    Article  CAS  PubMed  Google Scholar 

  • Di Caprio F, Altimari P, Pagnanelli F (2015) Integrated biomass production and biodegradation of olive mill wastewater by cultivation of Scenedesmus sp. Algal Res 9:306–311

    Article  Google Scholar 

  • Di Caprio F, Altimari P, Pagnanelli F (2018) Integrated microalgae biomass production and olive mill wastewater biodegradation: optimization of the wastewater supply strategy. Chem Eng J 349:539–546

    Article  CAS  Google Scholar 

  • Duan W, Meng F, Cui H, Lin Y, Wang G, Wu J (2018) Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol Environ Saf 15(157):441–456

    Article  CAS  Google Scholar 

  • Emerson D, Chauchan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic archaeon capable of growth on aromatic compounds. Arch Microbiol 161(6):445–452

    Article  CAS  Google Scholar 

  • Environmental Protection Agency, EPA (2014) Toxic and priority pollutants under the Clean Water Act, 40 CFR Part 423, Appendix A. Available at: https://19january2017snapshot.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf

  • Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30(9):1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Essam T, Amin MA, ElTayeb O, Mattiasson B, Guieysse B (2006) Biological treatment of industrial wastes in a photobioreactor. Water Sci Technol 53(11):117–125

    Article  CAS  PubMed  Google Scholar 

  • Essam T, Amin M, ElTayeb O, Mattiasson B, Guieysse B (2007) Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water Res 41(8):1697–1704

    Article  CAS  PubMed  Google Scholar 

  • Essam T, ElRakaiby M, Hashem A (2013) Photosynthetic based algal/bacterial combined treatment of mixtures of organic pollutants and CO2 mitigation in a continuous photobioreactor. World J Microbiol Biotechnol 29(6):969–974

    Article  CAS  PubMed  Google Scholar 

  • Essam T, El Rakaiby M, Agha A (2014) Remediation of the effect of adding cyanides on an algal/bacterial treatment of a mixture of organic pollutants in a continuous photobioreactor. Biotechnol Lett 36(9):1773–1781

    Article  CAS  PubMed  Google Scholar 

  • European Union, EU (2013) Council Directive 2013/39/EU amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union L226

    Google Scholar 

  • Field JA, Sierra-Álvarez R (2008) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7(3):211–241

    Article  CAS  Google Scholar 

  • Filipowicz N, Momotko M, Boczkaj G, Pawlikowski T, Wanarska M, Cieśliński H (2017) Isolation and characterization of phenol-degrading psychrotolerant yeasts. Water Air Soil Pollut 228(6):210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folke J, Lund U (1983) Occurrence of low- and high-chlorinated phenols in municipal sewage before and after passing through biological treatment plants. J Chromatogr 279:189–198

    Article  CAS  PubMed  Google Scholar 

  • Franchi O, Bovio P, Ortega-Martínez E, Rosenkranz F, Chamy R (2018) Active and total microbial community dynamics and the role of functional genes bamA and mcrA during anaerobic digestion of phenol and p-cresol. Bioresour Technol 264:290–297

    Article  CAS  PubMed  Google Scholar 

  • Galíndez-Mayer J, Ramón-Gallegos J, Ruiz-Ordaz N, Juárez-Ramírez C, Salmerón-Alcocer A, Poggi-Varaldo HM (2008) Phenol and 4-chlorophenol biodegradation by yeast Candida tropicalis in a fluidized bed reactor. Biochem Eng J 38(2):147–157

    Article  CAS  Google Scholar 

  • Gallegos A, Fortunato MS, Foglia J, Rossi S, Gemini V, Gomez L, Gomez CE, Higa LE, Korol SE (2003) Biodegradation and detoxification of phenolic compounds by pure and mixed indigenous cultures in aerobic reactors. Int Biodeterior Biodegradation 52(4):261–267

    Article  CAS  Google Scholar 

  • Gao QT, Wong YS, Tam NFY (2011) Removal and biodegradation of nonylphenol by different Chlorella species. Mar Pollut Bull 63(5–12):445–451

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Fotooh-Abadi E (2011) Review: the biotransformation, biodegradation and bioremediation of organic compounds by microalgae. J Phycol 47(5):969–980

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Subrawahian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252

    Google Scholar 

  • González LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66(4):1527–1531

    Article  PubMed  PubMed Central  Google Scholar 

  • González G, Herrera MG, García MT, Peña MM (2001) Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors. Bioresour Technol 76(3):245–251

    Article  PubMed  Google Scholar 

  • Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Neto PC, Ferreira AF, Silva CM (2016) Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res 16:167–176

    Article  Google Scholar 

  • Grossart HP, Simon M (2007) Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat Microb Ecol 47(2):163–176

    Article  Google Scholar 

  • Guieysse B, Borde X, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2002) Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture. Biotechnol Lett 24(7):531–538

    Article  CAS  Google Scholar 

  • Gupta PL, Lee SM, Choi HJ (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31(9):1409–1417

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Simmonds NW (1964) Biochemistry of phenolic compounds. Academic, London

    Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    Article  CAS  PubMed  Google Scholar 

  • Harrass MC, Kindig AC, Taub FB (1985) Responses of blue-green and green algae to streptomycin in unialgal and paired culture. Aquat Toxicol 6(1):1–11

    Article  CAS  Google Scholar 

  • Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Ann Rev Microbiol 50:553–590

    Article  CAS  Google Scholar 

  • Hernández JP, de-Bashan L, Johana-Rodriguez D, Rodriguez Y, Bashan Y (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol 45(1):88–93

    Article  CAS  Google Scholar 

  • Heukelekian H (1956) Purifying chemically polluted waters. Ind Eng Chem 48(9):1403

    Article  Google Scholar 

  • Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003) Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng 95(2):200–203

    Article  CAS  PubMed  Google Scholar 

  • Hirooka T, Nagase H, Uchida K, Hiroshige Y, Ehara Y, Nishikawa J, Nishihara T, Miyamoto HZ (2005) Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environ Toxicol Chem 24(8):1896–1901

    Article  CAS  PubMed  Google Scholar 

  • Hirooka T, Nagase H, Hirata K, Miyamoto K (2006) Degradation of 2,4-dinitrophenol by a mixed culture of photoautotrophic microorganisms. Biochem Eng J 29(1):157–162

    Article  CAS  Google Scholar 

  • Huang Q, Jiang F, Wang L, Yang C (2017) Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3:318–329

    Article  Google Scholar 

  • Ji Q, Tabassum S, Yu G, Chua C, Zhang Z (2015) A high efficiency biological system for treatment of coal gasification wastewater – a key in-depth technological research. RSC Adv 5(50):40402–40413

    Article  CAS  Google Scholar 

  • Jiang HL, Tay JH, Maszenan AM, Tay STL (2006) Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ Sci Technol 40(19):6137–6142

    Article  CAS  PubMed  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R (ed) Biodegradation: life of science, chapter 11. In Tech Open, Croatia, pp 289–320

    Google Scholar 

  • Juárez-Jiménez B, Reboleiro-Rivas P, González-López J, Pesciaroli C, Barghini P, Fenice M (2012) Immobilization of Delftia tsuruhatensis in macro-porous cellulose and biodegradation of phenolic compounds in repeated batch process. J Biotechnol 157(1):148–153

    Article  CAS  PubMed  Google Scholar 

  • Jusoh N, Razali F (2008) Microbial consortia from residential wastewater for bioremediation of phenol in a chemostat. J Teknol 48:51–60

    Google Scholar 

  • Juteau P, Côté V, Duckett MF, Beaudet R, Lépine F, Villemur R, Bisaillon JG (2005) Cryptanaerobacter phenolicus gen. nov., sp nov., an anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate. Int J Syst Evol Microbiol 55(P1):245–250

    Article  CAS  PubMed  Google Scholar 

  • Kanekar PP, Sarneik SS, Kelkar AS (1998) Bioremediation of phenol by alkaliphilic bacteria isolated form alkaline Lake of Lonar, India. J Appl Microbiol 85(Suppl 1):128S–133S

    Article  PubMed  Google Scholar 

  • Kato S, Chino K, Kamimura N, Masai E, Yumoto I, Kamagata Y (2015) Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Sci Rep 5:14295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14(6):1466–1476

    Article  CAS  PubMed  Google Scholar 

  • Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML (2015) Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 19(6):1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Ramanan R, Cho DH, Oh HM, Kim H (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69:95–105

    Article  CAS  Google Scholar 

  • Kim E, Lee J, Han G, Hwang S (2018) Comprehensive analysis of microbial communities in full-scale mesophilic and thermophilic anaerobic digesters treating food waste-recycling wastewater. Bioresour Technol 259:442–450

    Article  CAS  PubMed  Google Scholar 

  • Klekner V, Kosaric N (1992) Degradation of phenols by algae. Environ Technol 13:493–501

    Article  CAS  Google Scholar 

  • Kotresha D, Vidyasagar GM (2017) Phenol degradation in a packed bed reactor by immobilized cells of Pseudomonas aeruginosa MTCC 4997. Biocatal Agric Biotechnol 10:386–389

    Google Scholar 

  • Krastanov A, Alexieva Z, Yemendzhiev H (2013) Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 13(1):76–87

    Article  CAS  Google Scholar 

  • Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278

    Article  CAS  PubMed  Google Scholar 

  • Larsdotter K (2006) Wastewater treatment with microalgae – a literature review. Vatten 62:31–38

    CAS  Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato E (ed) Phytochemistry: advances in research. Research Signpost, Trivandrum, pp 23–67

    Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15(2–3):74–92

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Lee M, Den W (2015) Spirulina maxima for phenol removal: study on its tolerance, biodegradability and phenol-carbon assimilability. Water Air Soil Pollut 226:395

    Article  CAS  Google Scholar 

  • Levén L, Nyberg K, Schnürer A (2012) Conversion of phenols during anaerobic digestion of organic solid waste: a review of important microorganisms and impact of temperature. J Environ Manag 95:99–103

    Article  CAS  Google Scholar 

  • Liao Q, Li L, Chen R, Zhu X (2014) A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. Bioresour Technol 161:186–191

    Article  CAS  PubMed  Google Scholar 

  • Liká K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62:135–146

    Article  CAS  Google Scholar 

  • Lima SAC, Castro PML, Morais R (2003) Biodegradation of p-nitrophenol by microalgae. J Appl Phycol 15(2–3):137–142

    Article  CAS  Google Scholar 

  • Lima SAC, Filomena M, Raposo J, Castro PML, Morasis RM (2004) Biodegradation of p-chlorophenol by microalgae consortium. Water Res 38(1):97–102

    Article  CAS  PubMed  Google Scholar 

  • Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162(2–3):588–606

    Article  CAS  PubMed  Google Scholar 

  • Lovell CH, Eriksen NT, Lewitus AJ, Chen YP (2002) Resistance of the marine diatom Thalassiosira sp. to toxicity of phenolic compounds. Mar Ecol Prog Ser 229:11–18

    Article  CAS  Google Scholar 

  • Lv Y, Chen Y, Song W, Hu Y (2014) Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge. J Hazard Mater 280:134–142

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi H, Prasad V, Liu Y, Ulrich AC (2015) In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium. Bioresour Technol 187:97–105

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schiner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663

    Article  CAS  PubMed  Google Scholar 

  • Martínková L, Kotik M, Marková E, Homolka L (2016) Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: a review. Chemosphere 149:373–382

    Article  CAS  PubMed  Google Scholar 

  • Maza-Márquez P, Martínez-Toledo MV, González-López J, Rodelas B, Juárez-Jiménez B, Fenice M (2013) Biodegradation of olive washing wastewater pollutants by highly efficient phenol-degrading strains selected from adapted bacterial community. Int Biodeterior Biodegradation 82:192–198

    Article  CAS  Google Scholar 

  • Maza-Márquez P, Martínez-Toledo MV, Fenice M, Andrade L, Laserrot A, González-López J (2014) Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int Biodeterior Biodegradation 88:69–76

    Article  CAS  Google Scholar 

  • Maza-Márquez P, González-Martínez A, Martínez-Toledo MV, Fenice M, Laserrot A, González-López J (2017a) Biotreatment of industrial olive washing waster by synergetic association microalgal-bacterial consortia in a photobioreactor. Environ Sci Pollut Res Int 24:527–538

    Article  CAS  PubMed  Google Scholar 

  • Maza-Márquez P, González-Martínez A, Rodelas B, González-López J (2017b) Full-scale photobioreactor for biotreatment of olive washing water: structure and diversity of the microalgae-bacteria consortium. Bioresour Technol 238:389–398

    Article  CAS  PubMed  Google Scholar 

  • Meyer JS, Marcus MD, Bergman HL (1984) Inhibitory interactions of aromatic organics during microbial degradation. Environ Sci Technol 3(4):583–587

    CAS  Google Scholar 

  • Michałowicz J, Duda W (2007) Phenols – sources and toxicity. Pol J Environ Stud 16(3):347–362

    Google Scholar 

  • Min M, Wang L, Li Y, Mohr M, Hu B, Zhou W, Chen P, Ruan R (2011) Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol 165(1):123–137

    Article  CAS  PubMed  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    Article  CAS  PubMed  Google Scholar 

  • Muñoz R, Köllner C, Guieysse B, Mattiasson B (2003) Salicylate biodegradation by various algal–bacterial consortia under photosynthetic oxygenation. Biotechnol Lett 25(22):1905–1911

    Article  PubMed  Google Scholar 

  • Muñoz R, Köllner C, Guieysse B, Mattiasson B (2004) Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnol Bioeng 87(6):797–803

    Article  CAS  PubMed  Google Scholar 

  • Muñoz R, Jacinto MSA, Guieysse B, Mattiasson B (2005) Combined carbon and nitrogen removal from acetonitrile using algal-bacterial reactors. Appl Microbiol Biotechnol 67(5):609–707

    Article  CAS  Google Scholar 

  • Muñoz R, Köllner C, Guieysse B (2009) Biofilm photobioreactors for the treatment of industrial waste-waters. J Hazard Mater 161(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Nešvera J, Rucká L, Pátek M (2015) Catabolism of phenol and its derivatives in bacteria: genes, their regulation, and use in the biodegradation of toxic pollutants. Adv Appl Microbiol 93:107–160

    Article  PubMed  Google Scholar 

  • Niaounakis M, Halvadakis C (2006) Olive processing waste management, Waste Management Series, vol 5. Elsevier, London

    Google Scholar 

  • Nikel PI, Pérez-Pantoja D, de Lorenzo V (2013) Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloprop-1-ene metabolism by Pseudomonas pavonaceae. Philos Trans R Soc B 368(1616):20120377

    Article  CAS  Google Scholar 

  • Nowak A, Mrozik A (2018) Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. J Environ Manag 215:216–229

    Article  CAS  Google Scholar 

  • Oesterhelt D, Patzelt H, Kesler B (1998) Decomposition of halogenated hydrocarbons by halophilic bacteria. Patent DE19639894

    Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci Total Environ 409:4141–4166

    Article  CAS  PubMed  Google Scholar 

  • Osanai T, Park YI, Nakamura Y (2017) Editorial: biotechnology of microalgae, based on molecular biology and biochemistry of eukaryotic algae and cyanobacteria. Front Microbiol 8:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algollogy. J Appl Phycol 15:99–106

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122(1):73–97

    Google Scholar 

  • Otto B, Beuchel C, Liers C, Reisser W, Harms H, Schlosser D (2015) Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. FEMS Microbiol Lett 362(11):pii:fnv072

    Article  CAS  Google Scholar 

  • Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81(9):1475–1485

    Article  CAS  Google Scholar 

  • Passos CT, Michelon M, Burkert JFM, Kalil SJ, Burkert CAV (2010) Biodegradation of phenol by free and encapsulated cells of a new Aspergillus sp. isolated from a contaminated site in southern Brazil. Afr J Biotechnol 9(40):6716–6720

    Google Scholar 

  • Petroutsos D, Katapodis P, Christakopoulos P, Kekos D (2007) Removal of p-chlorophenol by the marine microalga Tetraselmis marina. J Appl Phycol 19(5):485–490

    Google Scholar 

  • Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24(24):2047–2051

    Article  CAS  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25(19):1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Plotkin JS (2016) What’s new in phenol production? ASC News. Available at: https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/what-s-new-in-phenol-production-.html

  • Pozo C, Rodelas B, Martínez-Toledo MV, Vílchez R, González-López J (2007) Removal of organic load from olive washing water by an aerated submerged biofilter and profiling of the bacterial community involved in the process. J Microbiol Biotechnol 17(5):784–791

    CAS  PubMed  Google Scholar 

  • Prasad SBC, Babu RS, Chakrapani R, Ramachandra R, Rao CSV (2010) Kinetics of high concentrated phenol biodegradation by Acinetobacter baumannii. Int J Biotechnol Biochem 6(4):609–615

    Google Scholar 

  • Priac A, Morin-Crini N, Druart C, Gavoille S, Bradu C, Lagarrigue C, Torri G, Winterton P, Crini G (2017) Alkylphenol and alkylphenol polyethoxylates in water and wastewater: a review of options for their elimination. Arab J Chem 10(Supplement 2):S3749–S3773

    Article  CAS  Google Scholar 

  • Qiu YL, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y (2008) Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol 74(7):2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radjenovic J, Sedlak DL (2015) Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol 49(19):11292–11302

    Article  CAS  PubMed  Google Scholar 

  • Rahmanian N, Jafari SM, Galanakis CM (2014) Recovery and removal of phenolic compounds from olive mill wastewater. J Am Oil Chem Soc 91(1):1–18

    Article  CAS  Google Scholar 

  • Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34(1):14–29

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Mujtaba G, Memon SA, Leed K, Rashide N (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev 92:394–404

    Article  Google Scholar 

  • Rosenkranz F, Cabrol L, Carballa M, Donoso-Bravo A, Cruz L, Ruiz-Filippi G, Chamy R, Lema JM (2013) Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR. Water Res 47(17):6739–6749

    Article  CAS  PubMed  Google Scholar 

  • Rucká L, Nešvera J, Pátek M (2017) Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World J Microbiol Biotechnol 33(9):174

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2009 2(2):164–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu BG, Kim J, Han JI, Yang JW (2017) Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresour Technol 225:58–66

    Article  CAS  PubMed  Google Scholar 

  • Safonova E, Kvitko KV, Iankevitch MI, Surgko LF, Afti IA, Reisser W (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4(4):347–353

    Article  CAS  Google Scholar 

  • Schmeling S, Fuchs G (2009) Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase. Arch Microbiol 191(12):869–878

    Article  CAS  PubMed  Google Scholar 

  • Semple KT (1998) Heterotrophic growth on phenolic mixtures by Ochromonas danica. Res Microbiol 149(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62(4):1265–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170(2):291–300

    Article  CAS  Google Scholar 

  • Sharma R (2014) Polyphenols in health and disease. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols in human health and disease, vol 1. Elsevier, Oxford, pp 757–777

    Chapter  Google Scholar 

  • Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19(2):130–133

    Article  CAS  Google Scholar 

  • Shen YH (2002) Removal of phenol from water by adsorption–flocculation using organobentonite. Water Res 36(5):1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar V, Srivastana JN (2013) Assessment of bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. J Pet Environ Biotechnol 4:3

    Google Scholar 

  • Sobiesak M (2017) Chemical structure of phenols and its consequence for sorption processes. In: Soto-Hernández M, Palma-Tenango M, García-Mateos MR (eds) Phenolic compounds-natural sources, importance and applications, chapter 1. InTech Open, Croatia, pp 3–26

    Google Scholar 

  • Stoilova I, Krastanov A, Stanchev V, Daniel D, Gerginova M, Alexieva Z (2006) Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzym Microb Technol 39(5):1036–1041

    Article  CAS  Google Scholar 

  • Stoilova I, Krastanov A, Yanakieva I, Kratchanova M, Yemendjiev H (2007) Biodegradation of mixed phenolic compounds by Aspergillus awamori NRRL 3112. Int Biodeterior Biodegradation 60(4):342–346

    Article  CAS  Google Scholar 

  • Störmer K (1908) Ueber die Wirkung des Schwefelkohlenstoffs und ähnlicher Stoffe auf den Boden. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2 Naturwiss 20:282–286

    Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907

    Article  CAS  PubMed  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  PubMed  Google Scholar 

  • Sueoka K, Satoh H, Onuki M, Mino T (2009) Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke-oven wastewater detected by RNA stable-isotope probing. FEMS Microbiol Lett 291(2):169–174

    Article  CAS  PubMed  Google Scholar 

  • Suthersan S (1996) Remediation engineering: design concepts, Geraghty & Miller Environmental Sciences and Engineering Series. Lewis Publishers, CRC Press, Boca Raton

    Book  Google Scholar 

  • Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181(1–3):1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Terzyk AP (2007) The impact of carbon surface chemical composition on the adsorption of phenol determined at the real oxic and anoxic conditions. Appl Surf Sci 253(13):5752–5755

    Article  CAS  Google Scholar 

  • Thomas S, Sarfaraz S, Misharaz LC, Iyengar L (2002) Degradation of phenol and phenolic compounds by a defined denitrifying bacterial culture. World J Microbiol Biotechnol 18(1):57–63

    Article  CAS  Google Scholar 

  • Throop WM (1975) Alternative methods of phenol wastewater control. J Hazard Mater 1(4):319–329

    Article  Google Scholar 

  • Tikoo V, Scragg AH, Shales SW (1997) Degradation of pentachlorophenol by microalgae. J Chem Technol Biotechnol 68(4):425–431

    Article  CAS  Google Scholar 

  • Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148(3):213–217

    Article  CAS  PubMed  Google Scholar 

  • Varma RJ, Gaikwad BG (2008) Rapid and high biodegradation of phenols catalyzed by Candida tropicalis NCIM 3556 cells. Enzym Microb Technol 43(6):431–435

    Article  CAS  Google Scholar 

  • Vasconcelos-Fernandes T, Shrestha R, Sui Y, Papini G, Zeeman G, Vet LEM, Wijffels RH, Lamers P (2015) Closing domestic nutrient cycles using microalgae. Environ Sci Technol 49(20):12450–12456

    Article  CAS  PubMed  Google Scholar 

  • Veeresh GS, Kumar P, Mehrotra I (2005) Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Res 39(1):154–170

    Article  CAS  PubMed  Google Scholar 

  • Vermerris W, Nicholson R (2008) Phenolic compound biochemistry. Springer Science + Business Media B.V., Dordrecht

    Google Scholar 

  • Viggiani A, Olivieri G, Siani L, Di Donato A, Marzocchella A, Salatino P, Barbieri P, Galli E (2006) An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. J Biotechnol 123(4):464–477

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu L, Liu ZP, Qin S (2010) Investigations of the characteristics and mode of action of an algalytic bacterium isolated from Tai Lake. J Appl Phycol 22(4):473–478

    Article  Google Scholar 

  • Wang Y, Song J, Zhao W, He X, Chen J, Xiao M (2011) In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain. J Hazard Mater 192(1):354–360

    CAS  PubMed  Google Scholar 

  • Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30(4):904–912

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xue C, Wang L, Zhao Q, Wei W, Sun Y (2016) Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresour Technol 205:264–268

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Diao P, Chen Q, Wu H, Xu N, Duan S (2017) Identification of novel pathways for biodegradation of bisphenol A by the green alga Desmodesmus sp. WR1, combined with mechanistic analysis at the transcriptome level. Chem Eng J 321:424–431

    Article  CAS  Google Scholar 

  • Watanabe K, Takihana H, Aoyagi H, Hanada S, Watanabe Y, Ohmura N, Saiki H, Tanaka H (2005) Symbiotic association in Chlorella culture. FEMS Microbiol Ecol 51(2):187–196

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Hu Z, Yang L, Graham B, Kerr PG (2011) The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresour Technol 102(3):2419–2426

    Article  CAS  PubMed  Google Scholar 

  • Wurster M, Mundt S, Hammer E, Schauer F, Lindequist U (2003) Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. J Appl Phycol 15(2–3):171–176

    Article  CAS  Google Scholar 

  • Xiong JQ, Kurade MB, Jeon BH (2017) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36(1):30–44

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wu RSS, Kong RYC (2002) Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat Toxicol 59(3–4):191–200

    Article  CAS  PubMed  Google Scholar 

  • Yordanova G, Godjevargova T, Nenkova R, Ivanova D (2013) Biodegradation of phenol and phenolic derivatives by a mixture of immobilized cells of Aspergillus awamori and Trichosporon cutaneum. Biotechnol Biotechnol Equip 27(2):3681–3688

    Article  CAS  Google Scholar 

  • Zhang B, Lens PNL, Shi W, Zhang R, Zhang Z, Guo Y, Bao X, Cui F (2018) Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chem Eng J 334:2373–2382

    Article  CAS  Google Scholar 

  • Zhong W, Wang D, Xu X (2012) Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents. J Hazard Mater 217–218:286–292

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Maza-Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maza-Márquez, P., González-Martínez, A., Juárez-Jiménez, B., Rodelas, B., González-López, J. (2018). Microalgae-Bacteria Consortia for the Removal of Phenolic Compounds from Industrial Wastewaters. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_8

Download citation

Publish with us

Policies and ethics