Skip to main content

Fungal Nanoparticles Formed in Saline Environments Are Conducive to Soil Health and Remediation

  • Chapter
  • First Online:
Approaches in Bioremediation

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 1357 Accesses

Abstract

Sodium salt-affected, heavy metal-contaminated, chemical fertilizer-overused, and other hazardous constituents-caused poor quality soils are collectively called unhealthy soils. These unhealthy soils ultimately result in yield reduction, quality decline, and loss of income for farmers. The saline environment-derived fungi have the ability to resist or tolerate certain high concentrations of salts no matter how halotolerant or halophilic they are. And several mechanisms to alleviate the damages of salt, heavy metal, or other hazardous chemicals have been reported in the halotolerant or halophilic fungi. Among these mechanisms, nanoparticle-mediated bioremediation is proposed to be important. These nanoparticles are formed from the reductive products of soil metal cations or from fungal-secreted metabolites, enzymes, or hydrolysates that are beneficial to soil physical properties, fertility, activity, and health. This chapter will focus on the following aspects: identification of halotolerant or halophilic fungi, nanoparticles synthesized by halotolerant or halophilic fungi, mycoremediation, and health maintenance for saline-affected soils. The current advances of nanoparticle-mediated technology in soil health improvement are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggangan NS, Moon HK, Han SH (2010) Growth response of Acacia mangium wild seedlings to arbuscular mycorrhizal fungi and four isolates of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch. New For 39:215–230

    Article  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra−/intracellular biosynthesis of gold nanoparticles by an alkalitolerant fungus Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS (2013) Microbiology of Lonar Lake and other soda lakes. ISME J 7:468–476. https://doi.org/10.1038/ismej.2012.137

    Article  CAS  PubMed  Google Scholar 

  • Apte SK, Thomas J (1997) Possible amelioration of coastal soil salinity using halotolerant nitrogen-fixing cyanobacteria. Plant Soil 189:205–211

    Article  CAS  Google Scholar 

  • Arakaki R, Monteiro D, Boscolo R, Gomes E (2013) Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains. Braz J Microbiol 44:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Aslantas R, Cakmakci R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377

    Article  Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Coll Surf B Biointerfaces 103:283–287. https://doi.org/10.1016/j.colsurfb.2012.10.030

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Barnes SJ, Weitzman PD (1986) Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS0 Lett 201:267–270

    Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2007) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Batista-García RA, Balcázar-López E, Miranda-Miranda E, Sánchez-Reyes A, Cuervo-Soto L, Aceves-Zamudio D, Atriztán-Hernández K, Morales-Herrera C, Rodríguez-Hernández R, Folch-Mallol J (2014) Characterization of lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation. PLoS One 9(8):e105893. https://doi.org/10.1371/journal.pone.0105893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  PubMed  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Bruggen AHCV, Semenov AM, Zeiss MR (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Article  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465

    Article  CAS  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP, Volz PA (2000) Fungi discovered in the Dead Sea. Mycol Res News 104:132–133

    Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005a) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79

    Article  Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005b) The genus Eurotium–members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166

    Article  CAS  PubMed  Google Scholar 

  • Casadevall A (2012) Fungi and the rise of mammals. PLoS Pathog 8(8):e1002808. https://doi.org/10.1371/journal

    Article  PubMed  PubMed Central  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreas L, Diez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Castillo G, Demoulin V (1997) NaCl salinity and temperature effects on growth of three wood–rotting basidiomycetes from a Papua New Guinea coastal forest. Mycol Res 101:341–344

    Article  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 32883 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  CAS  PubMed  Google Scholar 

  • Dendooven L, Alcántara-Hernández RJ, Valenzuela-Encinas C, Luna-Guido ML, Perez-Guevara F, Marsch R (2010) Dynamics of carbon and nitrogen in an extreme alkaline saline soil: a review. Soil Biol Biochem 42:865–877

    Article  CAS  Google Scholar 

  • Devi LS, Joshi SR (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3:29–37

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekar NN, Rahul G, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1410.10036

  • Durán N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8. https://doi.org/10.1186/1477-3155-3-8

  • Elmeleigy MA, Hoseiny EN, Ahmed SA, Alhoseiny AM (2010) Isolation, identification, morphogenesis and ultrastructure of obligate halophilic fungi. J Appl Sci Environ Sanit 5:201–202

    Google Scholar 

  • Evans S, Hansen RW, Schneegurt MA (2013) Isolation and characterization of halotolerant soil fungi from the great salt plains of Oklahoma. Cryptogam Mycol 34:329–341. https://doi.org/10.7872/crym.v34.iss4.2013.329

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang J, Han X, Xie L, Liu M, Qiao G, Jiang J, Zhuo R (2014) Isolation of salt stress–related genes from Aspergillus glaucus CCHA by random overexpression in Escherichia coli. Sci World J 39:620959

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2009) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109

    Article  PubMed  CAS  Google Scholar 

  • Ford GW, Martin JJ, Rengasamy P, Boucher SC, Ellington A (1993) Soil sodicity in Victoria. Aust J Soil Res 31:869–909

    Article  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenerg 2:243–247

    Article  Google Scholar 

  • Gao Q, Yang XS, Yun R, Li CP (1996) MAGE, a dynamic model of alkaline grassland ecosystems with variable soil characteristics. Ecol Model 93:19–32

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    Article  CAS  Google Scholar 

  • Ghaly FM (2002) Role of natural vegetation in improving salt affected soil in northern Egypt. Soil Tillage Res 64:173–178

    Article  Google Scholar 

  • Gharaibeh MA, Eltaif NI, Shunnar OF (2009) Leaching and reclamation of calcareous saline–sodic soil by moderately saline and moderate-SAR water using gypsum and calcium chloride. J Plant Nutr Soil Sci 172:713–719

    Article  CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CABI Publishing, Wallingford

    Google Scholar 

  • Gholami-Shabani M, Akbarzadeh A, Mortazavi M, Emzadeh MK (2013) Evaluation of the antibacterial properties of silver nanoparticles synthesized with Fusarium oxysporum and Escherichia coli. Int J Life Sci Biotechnol Pharma Res 2:333–348

    Google Scholar 

  • Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. https://doi.org/10.1007/s12010-014-0809-2

    Article  CAS  PubMed  Google Scholar 

  • Gomes ECQ, Godinho VM, Silva DAS, de Paula MTR, Vitoreli GA, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Oliveira FS, Carvalho CR, Ferreira MC, Rosa CA, Rosa LH (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles. https://doi.org/10.1007/s00792-018-1003-1

  • Gonçalves VN, Vitoreli GA, de Menezes GCA, Mendes CRB, Secchi ER, Rosa CA, Rosa LH (2017) Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21:1005. https://doi.org/10.1007/s00792-017-0959-6

    Article  PubMed  Google Scholar 

  • Gostinčar C, Turk M (2012) Extremotolerant fungi as genetic resources for biotechnology. Bioengineered 3:293–297

    Article  PubMed  PubMed Central  Google Scholar 

  • Gostinčar C, Grube M, De Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  CAS  Google Scholar 

  • Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76:27–74

    Article  Google Scholar 

  • Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM (2014) Screening of candidate regulators for cellulase and hemicellulose production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 7(14):1–21

    Google Scholar 

  • Harner T, Wideman JL, Jantunen LM, Bidleman TF, Parkhurst WJ (1999) Residues of organochlorine pesticides in Alabama soils. Environ Pollut 106(3):323–332

    Article  CAS  PubMed  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Horikosh K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    Google Scholar 

  • Horodyski RJ, Knauth PL (1994) Life on land in the Precambrian. Science 263(5146):494–498

    Article  CAS  PubMed  Google Scholar 

  • Hozzein WN, Ali MIA, Ahmed MS (2013) Antimicrobial activities of some alkaliphilic and alkaline-resistant microorganisms isolated from Wadi Araba, the eastern desert of Egypt. Life Sci J 10:1823–1828

    Google Scholar 

  • Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanoparticles and application. Chem Soc Rev 44:6330–6374

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim Z, Ahmad A, Baba B (2001) Bioaccumulation of silver and the isolation of metal-binding protein from Pseudomonas diminuta. Braz Arch Biol Tech 44:223–225

    Article  CAS  Google Scholar 

  • Ilyas M, Miller RW, Qureshi RH (1993) Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Sci Soc Am J 57:1580–1585

    Article  Google Scholar 

  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Ingle A, Rai MK, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  PubMed  Google Scholar 

  • Karlen DL, Andrews SS, Wienhold BJ, Zobeck TM (2008) Soil quality assessment: past, present and future. J Integr Biosci 6:3–14

    Google Scholar 

  • Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190

    Article  CAS  PubMed  Google Scholar 

  • Kis-Papo T, Weig AR, Riley R, Peršoh D, Salamov A, Sun H, Lipzen A, Wasser SP, Rambold G, Grigoriev IV, Nevo E (2014) Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum. Nat Commun 5:3745. https://doi.org/10.1038/ncomms4745

    Article  CAS  PubMed  Google Scholar 

  • Kogej T, Ramos J, Plemenitas A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71:6600–6605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar M (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Kumar AS, Ansari AA, Ahmad A, Khan MI (2007a) Extracellular biosynthesis of CdS quantum dots by the fungus Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Ahmad A, Khan MI (2007b) Sulfite reductase mediated synthesis of gold nanoparticles capped with phytochelatin. Biotechnol Appl Biochem 47:191–195. https://doi.org/10.1042/BA20060205

    Article  CAS  PubMed  Google Scholar 

  • Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007c) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  Google Scholar 

  • Li CH, Wang HR, Yan TR (2012a) Cloning, purification, and characterization of a heat– and alkaline–stable endoglucanase B from Aspergillus niger BCRC31494. Molecules 17:9774–9789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012b) Fungus mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  Google Scholar 

  • Li ZQ, Pei X, Zhang ZY, Wei Y, Song YY, Chen LN, Liu SA, Zhang S-H (2018) The unique GH5 cellulase member in the extreme halotolerant fungus Aspergillus glaucus CCHA is an endoglucanase with multiple tolerances to salt, alkali and heat: prospects for straw degradation applications. Extremophiles. https://doi.org/10.1007/s00792-018-1028-5

  • Liang X, Liu Y, Xie L, Liu X, Wei Y, Zhou X, Zhang SH (2015) A ribosomal protein AgRPS3aE from halophilic Aspergillus glaucus confers salt tolerance in heterologous organisms. Int J Mol Sci 16:3058–3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XD (2014) Two stress tolerance genes in halophilic Aspergillus: functional analysis and their application. Dissertation, Jilin University (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDTEMP&filename=1015507655.nh

  • Liu CX, Huang WY (2010) Influence of saline-alkali -tolerant bacteria combined with organic matter on formation of saline-alkali soil aggregates. Soils 42(1):111–116 (in Chinese, abstract in English)

    Google Scholar 

  • Liu XD, Liu JL, Wei Y, Tian YP, Fan FF, Pan HY, Zhang SH (2011) Isolation, identification and biologic characteristics of an extreme halotolerant Aspergillus sp. J Jilin Univ 49:548–552 (In Chinese; abstract in English)

    CAS  Google Scholar 

  • Liu G, Qin Y, Hu Y, Gao M, Peng S, Qu Y (2013) An endo–1,4–β–glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enzym Microb Technol 52:190–195

    Article  CAS  Google Scholar 

  • Liu XD, Xie L, Wei Y, Zhou XY, Jia B, Liu J, Zhang SH (2014) Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Appl Environ Microbiol 80:4294–4300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu XD, Wei Y, Zhou XY, Pei X, Zhang SH (2015) Aspergillus glaucus aquaglyceroporin gene glpF confers high osmosis tolerance in heterologous organisms. Appl Environ Microbiol 81:6926–6937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdy HM, el-Sheikh HH, Ahmed MS, Refaat BM (1996) Physiological and biochemical changes induced by osmolarity in halotolerant aspergilli. Acta Microbiol Pol 45:55–65

    CAS  PubMed  Google Scholar 

  • Mandeel QA (2006) Biodiversity of the genus Fusarium in saline soil habitats. J Basic Microbiol 46:480–494

    Article  PubMed  Google Scholar 

  • Melero S, Madejon E, Ruiz JC, Herencia JF (2007) Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur J Agron 26:327–334

    Article  CAS  Google Scholar 

  • Mernitz G, Koch A, Henrissat B, Schulz G (1996) Endoglucanase II (EGII) of Penicillium janthinellum: cDNA sequence, heterologous expression and promoter analysis. Curr Genet 29:490–495

    Article  CAS  PubMed  Google Scholar 

  • Moazeni M, Rashidi N, Shahverdi AR, Noorbakhsh F, Rezaie S (2011) Extracellular production of silver nanoparticles by using three common species of dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. Iran Biomed J 16(1):332–333

    Google Scholar 

  • Mohite P, Kumar AR, Zinjarde S (2017) Relationship between salt tolerance and nanoparticle synthesis by Williopsis saturnus NCIM 3298. World J Microbiol Biotechnol 33:163. https://doi.org/10.1007/s11274-017-2329-z

    Article  CAS  PubMed  Google Scholar 

  • Moubasher A, Abdel-Hafez S, Bagy M, Abdel-Satar M (1990) Halophilic and halotolerant fungi in cultivated desert and salt marsh soils from Egypt. Acta Mycol 26:65–81

    Article  Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:546074. https://doi.org/10.1155/2011/546074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 – ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:103–110

    Google Scholar 

  • Mulder JL, El-Hendawy H (1999) Microfungi under stress in Kuwait’s coastal saline depressions. Kuwait J Sci Eng 26:157–172

    CAS  Google Scholar 

  • Mulder JL, Ghannoum MA, Khamis L, Elteen KA (1989) Growth and lipid composition of some dematiaceous hyphomycete fungi grown at different salinities. Microbiology 135:3393–3404

    Article  CAS  Google Scholar 

  • Namasivayam SKR, Ganesh S, Avimanyu S (2011) Evaluation of anti-bacterial activity of silver nanoparticles synthesized from Candida glabrata and Fusarium oxysporum. Int J Med Microbiol Res 1:130–136

    Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Nazareth S, Gonsalves V (2014) Aspergillus penicillioides – a true halophile existing in hypersaline and polyhaline econiches. Ann Microbiol 64:397–402

    Article  Google Scholar 

  • Nazareth S, Gonsalves V, Nayak S (2012) A first record of obligate halophilic aspergilli from the Dead Sea. Indian J Microbiol 52:22–27

    Article  PubMed  Google Scholar 

  • Nouri H, Borujeni CS, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ 107:94–107

    Article  CAS  Google Scholar 

  • Oad FC, Samo MA, Soomro A, Oad DL, Oad NL, Siyal AG (2002) Amelioration of salt affected soils. Pak J Appl Sci 2:1–9

    Article  Google Scholar 

  • Ohno T, Inoue M, Ogihara Y (2001) Cytotoxic activity of gallic acid against liver metastasis of mastocytoma cells P-815. Anticancer Res 21(6A):3875–3880

    CAS  PubMed  Google Scholar 

  • Oo AN, Iwai CB, Saenjan P (2015) Soil properties and maize growth in saline and nonsaline soils using cassava–industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev 26: 300-310

    Google Scholar 

  • Pavani KV, Kumar NS, Sangameswaran BB (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 61:61–63

    CAS  PubMed  Google Scholar 

  • Peng XP, Wang Y, Liu PP, Hong K, Chen H, Yin X, Zhu WM (2011a) Aromatic compounds from the halotolerant fungal strain of Wallemia sebi PXP-89 in a hypersaline medium. Arch Pharm Res 34:907–912

    Article  CAS  PubMed  Google Scholar 

  • Peng XP, Wang Y, Sun K, Liu PP, Yin X, Zhu WM (2011b) Cerebrosides and 2-pyridone alkaloids from the halotolerant fungus Penicillium chrysogenum grown in a hypersaline medium. J Nat Prod 74:1298–1302

    Article  CAS  PubMed  Google Scholar 

  • Piñar G, Dalnodar D, Voitl C, Reschreiter H, Sterflinger K (2016) Biodeterioration risk threatens the 3100 year old staircase of hallstatt (Austria): possible involvement of halophilic microorganisms. PLoS One 11(2):e0148279. https://doi.org/10.1371/journal.pone.0148279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247

    Article  CAS  Google Scholar 

  • Qin Y, Wei X, Song X, Qu Y (2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol 135:190–195

    Article  CAS  PubMed  Google Scholar 

  • Rady MM (2011) Effects on growth, yield, and fruit quality in tomato (Lycopersicon esculentum Mill.) using a mixture of potassium humate and farmyard manure as an alternative to mineral–N fertilizer. J Hortic Sci Biotechnol 86:249–254

    Article  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178

    Article  CAS  Google Scholar 

  • Rai M, Ribeiro C, Mattoso L, Duran N (2015) Nanotechnologies in food and agriculture. Springer, Germany. https://doi.org/10.1007/978-3-319-14024-7

    Book  Google Scholar 

  • Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29. https://doi.org/10.1016/j.saa.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56

    Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    Article  CAS  Google Scholar 

  • Sahin U, Eroğlum S, Sahin F (2011) Microbial application with gypsum increases the saturated hydraulic conductivity of saline–sodic soils. Appl Soil Ecol 48:247–250

    Article  Google Scholar 

  • Sanae F, Miyaichi Y, Hayashi H (2003) Endothelium-dependent contraction of rat thoracic aorta induced by gallic acid. Phytother Res 17(2):187

    Article  CAS  PubMed  Google Scholar 

  • Santos SX, Carvalho CC, Bonfa MR, Silva R, Gomes E (2004) Screening for pectinolytic activity of wood–rotting basidiomycetes and characterization of the enzymes. Folia Microbiol 49:46–52

    Article  Google Scholar 

  • Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244

    Article  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzym Microb Technol 52(1):20–25

    Article  CAS  Google Scholar 

  • Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83(1):122–129

    Article  CAS  Google Scholar 

  • Scervino JM, Mesa MP, Della Mónica I, Recchi M, Moreno NS, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763

    Article  CAS  Google Scholar 

  • Schuster E, Dunn-Coleman N, Frisvad JC, van Dijck PW (2002) On the safety of Aspergillus niger– a review. Appl Microbiol Biotechnol 59:426–435

    Article  CAS  PubMed  Google Scholar 

  • Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. Int J Nanosci Nanotechnol 7:102–105

    Google Scholar 

  • Shelar GB, Chavan AM (2014) Fungus–mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch App Sci Res 6:111–114

    Google Scholar 

  • Shi Y, Zhu J (2016) Saline-alkali soil improvement fertilizer and preparation method and use method thereof. Chinese Patent, CN 105237293 A (in Chinese). http://patentool.wanfangdata.com.cn/Patent/Details?id=CN201510597529.0

  • Szabolcs I (1994) Soils and salinization. In: Pessarakli M (ed) Handbook of plant and crop stress, 1st edn. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Tam PCF (1995) Heavy-metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5:181–187

    Article  CAS  Google Scholar 

  • Tamura M, Kawasaki H, Sugiyama J (1999) Identity of the xerophilic species Aspergillus penicillioides: integrated analysis of the genotypic and phenotypic. J Gen Appl Microbiol 45:29–37

    Article  CAS  PubMed  Google Scholar 

  • Taneja K, Gupta S, Kuhad RC (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol 85:39–42

    Article  CAS  PubMed  Google Scholar 

  • Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

    Article  CAS  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues DF (2016) Extremophiles: applications in biotechnology. Springer briefs in microbiology: extremophilic microorganisms. Springer International Publishing. ISBN 978-3-319-45214-2, ISBN 978-3-319-45215-9 (eBook). https://doi.org/10.1007/978-3-319-45215-9

  • Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  CAS  PubMed  Google Scholar 

  • Turan M, Ataoglu N, Sahin F (2006) Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. J Sustain Agric 28:99–108

    Article  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by the fungus Trichoderma reesei. Insciences J 1:65–79

    Article  CAS  Google Scholar 

  • Vala AK, Shah S, Patel R (2014) Biogenesis of silver nanoparticles by marine derived fungus Aspergillus flavus from Bhavnagar coast, gulf of Khambat, India. J Mar Biol Oceanogr 3(1):1–3

    Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by endophytic fungus Aspergillus clavatus. Biomedicine 5:33–40

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22:89–94

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Seki K, Miyazaki T, Ishihama Y (2009) The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy Water Environ 7:259–270

    Article  Google Scholar 

  • Wang LL, Sun XY, Li SY, Zhang T, Zhang W, Zhai PH (2014) Application of organic amendments to a coastal saline soil in North China: effects on soil physical and chemical properties and tree growth. PLoS One 9(2):e89185. https://doi.org/10.1371/journal.pone.0089185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Zhang SH (2018) Abiostress resistance and cellulose degradation abilities of haloalkaliphilic fungi: applications for saline-alkaline remediation. Extremophiles 22:155–164. https://doi.org/10.1007/s00792-017-0986-3

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Liu XD, Jia B, Zhang SH, Liu JL, Gao W (2013) Alkaline-tolerant and halophilic Aspergillus strain and application thereof in environmental management. Chinese Patent, CN 103436450 A (in Chinese). http://patentool.wanfangdata.com.cn/Patent/Details?id=CN201310162347.1

  • Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108

    Article  CAS  Google Scholar 

  • Xie LX (2013) Cloning and stress resistance analysis of ribosomal protein genes (SpRPS3ae and SpRPL44) in extreme halotolerant Aspergillus sp. Dissertation. Jilin University (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=1013196212.nh

  • Xu ZH, Peng XP, Wang Y, Zhu WM (2011) (22E, 24R)-3ß,5α,9α-Trihydroxyergosta-7,22-dien-6-one monohydrate. Acta Cryst E67:o1141–o1142

    Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yan J, Song WN, Nevo E (2005) A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing–thawing: prospects for saline agriculture. Proc Natl Acad Sci U S A 102:18992–18997

    Article  CAS  Google Scholar 

  • Zajc J, Džeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N (2014a) Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 5:708-1–708-5. https://doi.org/10.3389/fmicb.2014.00708

    Article  Google Scholar 

  • Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2014b) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80(1):247–256. https://doi.org/10.1128/AEM.02702-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitas A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326

    Article  Google Scholar 

  • Zhang SH (2016) The genetic basis of abiotic stress resistance in extremophilic fungi: the genes cloning and application. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology, 1st edn. Springer Press, pp 29–42. ISBN 978-3-319-42850-5. http://www.springer.com/gb/book/9783319428505#aboutBook

  • Zhang X, Liu Y, Yan K, Wu H (2007) Decolorization of an anthraquinone–type dye by a bilirubin oxidase–producing nonligninolytic fungus Myrothecium sp. IMER1. J Biosci Bioeng 104:104–114

    Article  CAS  PubMed  Google Scholar 

  • Zhang SH, Li ZQ, Wei Y, Chen LN, Liu SS, Zhou XY, Song YY, Pei X (2016) Cellulase gene from extreme saline-alkali resistant Aspergillus and application. Chinese Patent, CN105420259A (in Chinese). http://patentool.wanfangdata.com.cn/Patent/Details?id=CN201610005024.5

  • Zhou XY (2016)Cloning and abiotic functional analysis of salt-tolerant genes in Halophilic Aspergillus glaucus. Dissertation. Jilin University (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=1016091320.nh&dbname=CMFDTEMP

Download references

Acknowledgments

The related work in our lab was partially supported by grants from the National Natural Science Foundation of China (grant nos. 31671972 and 31670141) and a project of the Ministry of Science and Technology of China (grant no. 2016YFD0300703). The authors would like to thank the Zhang Lab members, who provided the photographic pictures taken at their spare time. The authors are also grateful to former labmates Dr. Zheng-Qun LI, Dr. Yang SHI, Mr. Sen-Lin ZHANG, and Zhi-Yuan GONG (visiting research fellow from the Northeast Forestry University, Harbin), who contributed to fungal isolation and field trials, as well as to collaborators Zhen-Dong CHEN and Run-Zhi TAO who provided encouragement and assistance in promoting our scientific and technological achievements regarding saline-alkaline soil mycoremediation using haloalkaliphilic fungi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, Y., Chen, LN., Zhang, ZY., Zhu, C., Zhang, SH. (2018). Fungal Nanoparticles Formed in Saline Environments Are Conducive to Soil Health and Remediation. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_14

Download citation

Publish with us

Policies and ethics