Skip to main content

Stepwise Strategies for the Bioremediation of Contaminated Soils: From the Microbial Isolation to the Final Application

  • Chapter
  • First Online:
Approaches in Bioremediation

Abstract

In this chapter, we provide several tools and protocols that should be followed to develop successful research on soil bioremediation. We propose step-by-step guidance toward the study of a contaminated site as a possible target for bioremediation. Some tips regarding the selection of the target site are provided. General protocols and international standards on sampling were taken into account, to maintain the integrity of the samples and their correct management for the following treatments at the laboratory. Microbial isolation and their abilities for bioremediation vary according to the nature of the sample, and as a consequence different methodologies were proposed. Assays developed with culturable microorganisms to select those able to act on the contaminant of interest were also described. When the selection was completed, the analysis to establish the mechanisms involved in the interactions with the contaminants was described. Finally, we focused on the use of molecular biology approaches, such as proteomics and genetics, to evaluate how microorganisms reacted in the presence of the contaminant.

This chapter includes specific highlights on the main issues to take into account when starting research aiming toward soil bioremediation, so we expect it will be useful for researchers working on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Khan MS, Singh B, Singh Cameotra S (2015) Biological applications of biosurfactants and strategies to potentiate commercial production. In: CRC press (ed) Biosurfactants: production and utilization: processes, technologies and economics, vol 159. Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp, an exopolysaccharide-producing halophilic bacterium. Prog Biol Sci 2:1–11

    Google Scholar 

  • Bansal N, Kanwar SS (2013) Peroxidase(s) in environment protection. Sci World J 2013:714639

    Article  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Campos M, Perruchon C, Vasilieiadis S, Menkissoglu-Spiroudi U, Karpouzas DG, Diez MC (2015) Isolation and characterization of bacteria from acidic pristine soil environment able to transform iprodione and 3,5-dichloraniline. Int Biodeterior Biodegrad 104:201–211

    Article  CAS  Google Scholar 

  • Canstein H, Kelly S, Li Y, Wagner-Dobler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. J Microbiol Methods 91(2):246–251

    Article  CAS  PubMed  Google Scholar 

  • Castilla A, Panizza P, Rodríguez D, Bonino L, Díaz P, Irazoqui G, Rodríguez Giordano S (2017) A novel thermophilic and halophilic esterase from Janibacter sp. R02, the first member of a new lipase family (family XVII). Enzym Microb Technol 98:86–95. https://doi.org/10.1016/j.enzmictec.2016.12.010

    Article  CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impact 17(2):326–342

    Article  CAS  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25(10):1829–1836

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  PubMed  Google Scholar 

  • Crean DE, Coker VC, Van der Laan G, Lloyd JR (2012) Engineering biogenic magnetite for sustained Cr(VI) remediation in flow-through systems. Environ Sci Technol 46:3352–3359

    Article  CAS  PubMed  Google Scholar 

  • Deicke M, Bellenger JP, Wichard T (2013) Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 1298:50–60

    Article  CAS  PubMed  Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101(6):1558–1569

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B 28(2):83–99

    Article  CAS  Google Scholar 

  • El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R (2015) “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environ Sci Technol 49(19):11281–11291. https://doi.org/10.1021/acs.est.5b01740

    Article  CAS  PubMed  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI)by a Bacillus sp. Biotechnol Lett 28:247–252

    Article  CAS  PubMed  Google Scholar 

  • EPA (Environmental Protection Agency) (2004) Introduction to phytoremediation EPA-report. http://clu-in.org/techfocus/default.focus/sec/Bioremediation/cat/Overview/. Accessed Jan 2014

  • Eslami M, Amoozegar MA, Asad S (2016) Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. Int J Biol Macromol 85:111–116

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  PubMed  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54(1):95–114

    Article  CAS  Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegrad 64:434–441

    Article  CAS  Google Scholar 

  • Fuentes MS, Sáez JM, Benimeli CS, Amoroso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231

    Article  CAS  Google Scholar 

  • Fuentes MS, Alvarez A, Sáez JM, Benimeli CS, Amoroso MJ (2013a) Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains. Int J Environ Sci Technol 11(4):1147–1156

    Article  CAS  Google Scholar 

  • Fuentes MS, Briceño GE, Sáez JM, Benimeli CS, Diez MC, Amoroso MJ (2013b) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. BioMed Res Int. https://doi.org/10.1155/2013/392573

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. MBio 156(3):609–643

    CAS  Google Scholar 

  • Gadd GM, Pan X (2016) Biomineralization, bioremediation and biorecovery of toxic metals and radionuclides. Geomicrobiol J 33(3–4):175–178

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. EJMP & EP (Eur J Mineral Process Environ Protect) 3(1):58–66

    Google Scholar 

  • Gentili AR, Cubitto MA, Ferrero M, Rodríguez MS (2006) Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int Biodeterior Biodegrad 57:222–228

    Article  CAS  Google Scholar 

  • Ghasemi A, Asad S, Kabiri M, Dabirmanesh B (2017) Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Appl Microbiol Biotechnol 101:7227–7238

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35(4):339–354

    Article  CAS  Google Scholar 

  • Gillan DC, Van Camp C, Mergeay M, Provoost A, Thomas N, Vermard L, Billon G, Wattiez R (2017) Paleomicrobiology to investigate copper resistance in bacteria: isolation and description of Cupriavidus necator B9 in the soil of a medieval foundry. Environ Microbiol 19:770–787

    Article  CAS  PubMed  Google Scholar 

  • Gómez PI, Barriga A, Cifuentes AS, González MA (2003) Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) chlorophyta. Biol Res 36:185–192

    Article  PubMed  Google Scholar 

  • González H, Jensen T (1998) Nickel sequestering by polyphosphate bodies in Staphylococcus aureus. Microbios 93:179–185

    PubMed  Google Scholar 

  • Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59(5):629–638

    Article  CAS  PubMed  Google Scholar 

  • Haferburg G, Kloess G, Schmitz W, Kothe E (2008) “Ni-struvite”–a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72(3):517–523

    Article  CAS  PubMed  Google Scholar 

  • Handley-Sidhu S, Mullan TK, Grail Q, Albadarneh M, Ohnuki T, Macaskie LE (2016) Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite. Sci Rep 6:23361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou W, Ma Z, Sun L, Han M, Lu J, Li Z, Mohamad OA, Wei G (2013) Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu2+. J Hazard Mater 261:614–620

    Article  CAS  PubMed  Google Scholar 

  • Irazusta V, Nieto-Peñalver CG, Cabral ME, Amoroso MJ, De Figueroa LIC (2013) Relationship among carotenoid production, copper bioremediation and oxidative stress in Rhodotorula mucilaginosa RCL-11. Process Biochem 48:803–809

    Article  CAS  Google Scholar 

  • Irazusta V, Michel L, De Figueroa L (2016) Biomineralización de cobre en Candida fukuyamaensis RCL-3. Rev Argent Microbiol 48(2):166–170

    PubMed  Google Scholar 

  • Irazusta V, Bernal AR, Estévez MC, De Figueroa L (2018) Proteomic and enzymatic response under Cr (VI) overload in yeast isolated from textile-dye industry effluent. Ecotoxicol Environ Saf 148:490–500

    Article  CAS  PubMed  Google Scholar 

  • Isaac P, Martínez FL, Bourguignon N, Sánchez LA, Ferrero MA (2015) Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. Int Biodeterior Biodegrad 101:23–31

    Article  CAS  Google Scholar 

  • Iustman LR, López NI, Ruzal SM, Vullo DL (2013) Bioremediation approaches in a laboratory activity for the industrial biotechnology and applied microbiology (IBAM) course. J Microbiol Biol Educ 14(1):131

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones RK (1997) A simplified pseudo-component oil evaporation model. In: Proceedings of the 20th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Ottawa, pp 43–61

    Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 10:1996–2002

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011. https://doi.org/10.4061/2011/805187

  • Karnwal A (2017) Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L). J Plant Prot Res 57:144–151

    Article  Google Scholar 

  • Kim HM, Chae N, Jung JY, Lee YK (2013) Isolation of facultatively anaerobic soil bacteria from Ny-Alesund, Svalbard. Polar Biol 36(6):787–796

    Article  Google Scholar 

  • Kletzin A (2006) Metabolism of inorganic sulfur compounds in archaea. In: Garret RA, Klenk HP (eds) Archaea: evolution, physiology, and molecular biology. Blackwell Publishing, Oxford, pp 262–274

    Google Scholar 

  • Konhauser K, Riding R (2012) Bacterial biomineralization. In: Knoll H, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley, Somerset, pp 105–130

    Chapter  Google Scholar 

  • Krause L, Diaz NN, Goesmann Z, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36(7):2230–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litchfield CD (2011) Potential for industrial products from halophilic Archaea. J Int Microbiol Biotechnol 38(10):1635–1647

    Article  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211(4487):1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13(4):217

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69

    Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2009) Brock biology of microorganisms, 12th edn. Pearson Benjamin Cummings, New York

    Google Scholar 

  • Majumder A, Bhattacharyya K, Bhattacharyya S, Kole SC (2013) Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Sci Total Environ 46:1006–1014

    Article  CAS  Google Scholar 

  • Majzlik P, Strasky A, Adam V, Nemec M, Trnkova L, Zehnalek J, Hubalek J, Provaznik I, Kizek R (2011) Influence of zinc (II) and copper(II) ions on Streptomyces bacteria revealed by electrochemistry. Int J Electrochem Sci 6:2171–2191

    CAS  Google Scholar 

  • Martinez F, Orce IG, Rajal VB, Irazusta V (2018) Salar del Hombre Muerto, source of lithium-tolerant bacteria. Environ Geochem Health 1–15. https://doi.org/10.1007/s10653-018-0148-2

  • Moraga NB, Amoroso MJ, Rajal VB (2014a) Strategies to ameliorate soils contaminated with boron compounds. In: Bioremediation in Latin America. Springer, Cham, pp 41–51

    Google Scholar 

  • Moraga NB, Poma HR, Amoroso MJ, Rajal VB (2014b) Isolation and characterization of indigenous Streptomyces and Lentzea strains from soils containing boron compounds in Argentina. J Basic Microbiol 54(6):568–577

    Article  CAS  PubMed  Google Scholar 

  • Moraga NB, Irazusta V, Amoroso MJ, Rajal VB (2017) Bio-precipitates produced by two autochthonous boron tolerant Streptomyces strains. J Environ Chem Eng 5(4):3373–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities-large-scale sequencing of mRNAs retrieved from natural communities provides insights into microbial activities and how they are regulated. Microbe 4(7):329

    Google Scholar 

  • More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag 144:1–25

    Article  CAS  Google Scholar 

  • Mulligan CN, Galvez-Cloutier R (2003) Bioremediation of metal contamination. Environ Monit Assess 84:45–60

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Naik MM, Dubey SK (2013) Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf 98:1–7

    Article  CAS  PubMed  Google Scholar 

  • Nancucheo I, Rowe OF, Hedrich S, Johnson DB (2016) Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing. FEMS Microbiol Lett 363:fnwo83. https://doi.org/10.1093/femsle/fnwo83

  • Navarro CA, Von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46(4):363–371

    Article  PubMed  Google Scholar 

  • Nesme J, Achouak W, Agathos SN, Bailey M, Baldrian P, Brunel D, Frostegård Å, Heulin T, Jansson JK, Jurkevitch E et al (2016) Back to the future of soil metagenomics. Front Microbiol 7:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Olegario J, Yee N, Miller M et al (2010) Reduction of Se(VI) to Se (-II) by zero valent iron nanoparticle suspensions. J Nanopart Res 12(6):2057–2068

    Article  CAS  Google Scholar 

  • Ortega-Cabello L, Pérez-Méndez HI, Manjarrez-Alvarez N, Solís-Oba A, López-Luna A (2017) Effect of iron salts on Rhodococcus sp. and Gordonia sp. on carotenoid production. Rev Mex Ing Quim 16(1):1–10

    Google Scholar 

  • Oves M, Saghir Khan M, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59(2):500–512

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Bolan N, Megharaj M, Naidu R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829–836

    Article  CAS  PubMed  Google Scholar 

  • Pérez-González T, Valverde-Tercedor C, Jiménez-López C (2011) Biomineralización bacterianad e magnetita y aplicaciones. http://www.ehues/sem/seminario_pdf/SEMINARIO_SEM_7_058pdf. Accessed Nov 2013

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing, Cham, Switzerland https://doi.org/10.1007/978-3-319-68957-9

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing, Cham, Switzerland https://www.springer.com/us/book/9783319773858

  • Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35(9):833–844

    Article  CAS  PubMed  Google Scholar 

  • Rangarajan V, Narayanan M (2018) Biosurfactants in soil bioremediation. In: Advances in soil microbiology: recent trends and future prospects. Springer, Singapore, pp 193–204

    Chapter  Google Scholar 

  • Romano-Armada N, Amoroso MJ, Rajal VB (2017) Effect of glyphosate application on soil quality and health under natural and zero tillage field conditions. Soil Environ 36(2):141–154

    Article  Google Scholar 

  • Rosas Hernández I (2009) Identification and characterization of microorganisms with resistance to mercurial compounds. Master’s thesis, Interdisciplinary Center for Research and Studies on the Environment and Development (CIIEMAD)

    Google Scholar 

  • Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Castro I, Amador-García A, Moreno-Romero C et al (2017) Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes. J Environ Radioact 166:130–141

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12

    Article  CAS  PubMed  Google Scholar 

  • Singh OV (2006) Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 6(20):5481–5492

    Article  CAS  PubMed  Google Scholar 

  • Singh OV, Nagaraj NS (2006) Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Brief Funct Genomics 4(4):355–362

    Article  CAS  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397

    Article  CAS  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25(1):99–121

    Article  CAS  PubMed  Google Scholar 

  • Slaveykova VI, Parthasarathy N, Dedieu K, Toescher D (2010) Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti. Environ Pollut 158:2561–2565. https://doi.org/10.1016/j.envpol.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  • Song B, Palleroni NJ, Häggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez P (2002) Heavy metal incorporation in bacteria and its environmental significance. Interciencia 27:160–172

    Google Scholar 

  • Techtmann SM, Hazen TC (2016) Metagenomic applications in environmental monitoring and bioremediation. J Ind Microbiol Biotechnol 43(10):1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Tekere M, Lötter A, Olivier J, Jonker N, Venter S (2011) Metagenomic analysis of bacterial diversity of Siloam hot water spring, Limpopo, South Africa. Afr J Biotechnol 10(78):18005–18012

    Google Scholar 

  • Thompson IP, Van Der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7(7):909–915

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC2297 using waste frying rice bran oil. Ann Microbiol 62:85–91

    Article  CAS  Google Scholar 

  • Villas-Bôas SG, Bruheim P (2007) The potential of metabolomics tools in bioremediation studies. OMICS 11(3):305–313

    Article  PubMed  Google Scholar 

  • Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173

    Article  CAS  PubMed  Google Scholar 

  • Vodnik D, Grčman H, Maček I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392(1):130–136

    Article  CAS  PubMed  Google Scholar 

  • Wallenius K, Rita H, Simpanen S, Mikkonen A, Niemi RM (2010) Sample storage for soil enzyme activity and bacterial community profiles. J Microbiol Methods 81(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Wang D-Z, Kong L-F, Li Y-Y, Xie Z-X (2016) Environmental microbial community proteomics: status, challenges and perspectives. Int J Mol Sci 17(8):1275. https://doi.org/10.3390/ijms17081275

    Article  PubMed Central  Google Scholar 

  • Watanabe K (2001) Microorganisms relevant to bioremediation. CurrOpinBiotechnol 12(3):237–241

    CAS  Google Scholar 

  • Wiegel J, Ljungdahl LG, Rawson JH (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol 139:800–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DY, Wang JL, Pan XL (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater 138:589–593

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Feng J-Q, Zhou L, Mbadinga SM, Gu JD, Mu BZ (2018) Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World J Microbiol Biotechnol 34:1–11

    Article  CAS  Google Scholar 

  • Zhou Q, Chen Y, Yang M, Li W, Deng L (2013) Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support. Bioresour Technol 136:413–417

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez, F.L., Moraga, N.B., Romano-Armada, N., Yañez-Yazlle, M.F., Rajal, V.B., Irazusta, V. (2018). Stepwise Strategies for the Bioremediation of Contaminated Soils: From the Microbial Isolation to the Final Application. In: Prasad, R., Aranda, E. (eds) Approaches in Bioremediation. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02369-0_1

Download citation

Publish with us

Policies and ethics