Skip to main content

Electrochemical Device Setup and Fabrication

  • Chapter
  • First Online:
Lithium Intercalation in Bilayer Graphene Devices

Part of the book series: Springer Theses ((Springer Theses))

  • 355 Accesses

Abstract

In this chapter we introduce the phenomenology of the electrochemical lithiation of graphite. Processes are discussed that happen during lithiation both within LixC6 as well as at the interface with the electrolyte. We then present the polymer electrolyte used, including its properties and positioning capabilities. The fabrication of bilayer graphene devices studied in this work is explained thereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The chemical potential of Li in, e.g., the cathode \(\mu ^{ {\circ }}_{\text {Li},c}=\mu _{\text {Li},c}^{\circ }+RT\ln a_c\) contains a standard value at standard conditions \(\mu _{\text {Li},c}^{\circ }\) and an activity (\(a_c\)) dependent term. The activity depends on the state of charge of the battery.

  2. 2.

    A higher Li density up to LiC\(_2\) may be achieved in high-pressure conditions [5].

  3. 3.

    Measured after rinsing the substrate in acetone and isopropanol, without any additional cleaning or surface activation steps.

References

  1. Manthiram, A.: Materials aspects: an overview. In: Nazri, G.-A., Pistoia, G. (eds.) Lithium Batteries: Science and Technology, pp. 3–41. Springer Science+Business Media, New York (2003)

    Google Scholar 

  2. Winter, M., Besenhard, J.O.: Lithiated carbons. In: Daniel, C., Besenhard, J.O. (eds.) Handbook of Battery Materials, pp. 433–478. Wiley, Weinheim, Germany (2011)

    Chapter  Google Scholar 

  3. Yao, F., et al.: Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134, 8646–8654 (2012)

    Article  Google Scholar 

  4. Berry, V.: Impermeability of graphene and its applications. Carbon 62, 1–10 (2013)

    Article  Google Scholar 

  5. Enoki, T., Endo, M., Suzuki, M.: Graphite Intercalation Compounds and Applications. Oxford University Press, Oxford (2003)

    Google Scholar 

  6. Bernal, J.D.: The structure of graphite. Proc. Roy. Soc. Lond. A 106, 749–773 (1924)

    Article  ADS  Google Scholar 

  7. Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981)

    Article  ADS  Google Scholar 

  8. Kirczenow, G.: Staging and kinetics. In: Zabel, H., Solin, S.A. (eds.) Graphite Intercalation Compounds I. Springer Series in Materials Science, vol. 14, pp. 59–100. Springer, Berlin (1990)

    Chapter  Google Scholar 

  9. Dahn, J.R.: Phase diagram of Li\(_x\)C\(_6\). Phys. Rev. B 44, 9170–9177 (1991)

    Article  ADS  Google Scholar 

  10. Fong, R., von Sacken, U., Dahn, J.R.: Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990)

    Article  Google Scholar 

  11. Sugawara, K., Kanetani, K., Sato, T., Takahashi, T.: Fabrication of Li-intercalated bilayer graphene. AIP Adv. 1, 022103 (2011)

    Article  ADS  Google Scholar 

  12. Holzwarth, N.A.W.: Electronic band structure of graphite intercalation compounds. In: Zabel, H., Solin, S.A. (eds.) Graphite Intercalation Compounds II. Springer Series in Materials Science, vol. 18, pp. 7–52. Springer, Berlin (1992)

    Chapter  Google Scholar 

  13. Winter, M., Moeller, K.C., Besenhard, J.O.: Carbonaceous and graphitic anodes. In: Nazri, G.-A., Pistoia, G. (eds.) Lithium Batteries: Science and Technology, pp. 144–194. Springer Science+Business Media, New York (2003)

    Google Scholar 

  14. Guzman, D.M., Alyahyaei, H.M., Jishi, R.A.: Superconductivity in graphene-lithium. 2D Mater. 1, 021005 (2014)

    Article  Google Scholar 

  15. Shirodkar, S.N., Kaxiras, E.: Li intercalation at graphene/hexagonal boron nitride interfaces. Phys. Rev. B 93, 245438 (2016)

    Google Scholar 

  16. Kaloni, T.P., Cheng, Y.C., Upadhyay Kahaly, M., Schwingenschlögl, U.: Charge carrier density in Li-intercalated graphene. Chem. Phys. Lett. 534, 29–33 (2012)

    Article  ADS  Google Scholar 

  17. Peled, E., Golodnitsky, D., Penciner, J.: The anode/electrolyte interface. In: Daniel, C., Besenhard, J.O. (eds.) Handbook of Battery Materials, pp. 479–524. Wiley, Germany (2011)

    Chapter  Google Scholar 

  18. Yamaki, J., Tobishima, S.: Rechargeable lithium anodes. In: Daniel, C., Besenhard, J.O. (eds.) Handbook of Battery Materials, pp. 377–404. Wiley, Germany (2011)

    Chapter  Google Scholar 

  19. Gray, F., Armand, M.: Polymer electrolytes. In: Daniel, C., Besenhard, J.O. (eds.) Handbook of Battery Materials, pp. 627–656. Wiley, Germany (2011)

    Chapter  Google Scholar 

  20. Nair, J.R., Gerbaldi, C., Destro, M., Bongiovanni, R., Penazzi, N.: Methacrylic-based solid polymer electrolyte membranes for lithium-based batteries by a rapid UV-curing process. React. Funct. Polym. 71, 409–416 (2011)

    Article  Google Scholar 

  21. Nair, J.R., et al.: UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries. J. Power Sources 178, 751–757 (2008)

    Article  ADS  Google Scholar 

  22. Gonnelli, R.S., et al.: Temperature dependence of electric transport in few-layer graphene under large charge doping induced by electrochemical gating. Sci. Rep. 5, 9554 (2015)

    Article  Google Scholar 

  23. Evans, J., Vincent, C.A., Bruce, P.G.: Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987)

    Article  Google Scholar 

  24. Popovic, J., Hasegawa, G., Moudrakovski, I., Maier, J.: Infiltrated porous oxide monoliths as high lithium transference number electrolytes. J. Mater. Chem. A 4, 7135–7140 (2016)

    Article  Google Scholar 

  25. Lafkioti, M.: Untersuchung der 2D Transporteigenschaften von Graphen auf hydrophobem Substrat. Doctoral dissertation, Universität Stuttgart, Germany (2011)

    Google Scholar 

  26. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  27. Dean, C.R., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010)

    Article  ADS  Google Scholar 

  28. Ferrari, A.C., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Google Scholar 

  29. Nagashio, K., Yamashita, T., Nishimura, T., Kita, K., Toriumi, A.: Electrical transport properties of graphene on SiO\(_2\) with specific surface structures. J. Appl. Phys. 110, 024513 (2011)

    Article  ADS  Google Scholar 

  30. ASTM F76-08(2016): Standard test methods for measuring resistivity and Hall coefficient and determining Hall mobility in single-crystal semiconductors. ASTM International, West Conshohocken, USA (2016)

    Google Scholar 

  31. Bonaccorso, F., et al.: Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (2012)

    Article  Google Scholar 

  32. Pelton, A.D.: The Au-Li (gold-lithium) system. Bull. Alloy Phase Diagr. 7, 228–231 (1986)

    Article  Google Scholar 

  33. Bale, C.W.: The Li-Ti (lithium-titanium) system. Bull. Alloy Phase Diagr. 10, 135–138 (1989)

    Article  Google Scholar 

  34. Yazami, R.: Lithium reaction with metal nanofilms. In: Yazami, R. (ed.) Nanomaterials for Lithium-Ion Batteries: Fundamentals and Applications, pp. 199–226. Pan Stanford Publishing, CRC Press, Taylor & Francis Group, Boca Raton, USA (2014)

    Google Scholar 

  35. Lohmann, T.: Elektronischer Transport in Graphen. Doctoral dissertation, RWTH Aachen, Germany (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kühne .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kühne, M. (2018). Electrochemical Device Setup and Fabrication. In: Lithium Intercalation in Bilayer Graphene Devices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02366-9_3

Download citation

Publish with us

Policies and ethics