Skip to main content

Detection of Palm Tree Pests Using Thermal Imaging: A Review

  • Chapter
  • First Online:
Machine Learning Paradigms: Theory and Application

Part of the book series: Studies in Computational Intelligence ((SCI,volume 801))

Abstract

Due to the extensive stretches of date plantation and topography of traditional grooves in countries such as Saudi Arabia and Egypt, the red palm weevil (RPW) early detection is a significant challenge. The RPW is a palm borer insect that develops within the soft tissues of the trunk and crown, eventually leading to tree death. Early detection of RPW infestation is crucial because, at an early stage of infestation, palms can be treated more efficiently and saved, while the determination of treatment efficacy is hugely vital to optimize palm rescue efforts. Detection is often particularly problematic since not all palms can be accessed and inspected directly. Thermography technique can determine the thermal properties of any objects of interest, and it is a non-destructive. In thermography, the invisible radiation patterns are transformed to visible images called thermal images. Those thermal images are acquired using specific sensors that can be coupled with many available optical systems. Due to the simple operating procedure and the noticeable reductions in equipment cost of thermal imaging systems, it gains popularity in pests’ detection. This chapter discusses the state-of-the-art research concerning the detection methods for detecting infected Palm trees. The study will concentrate on the thermal imaging and its application on red palm weevil detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard, F.W., Moore, D., Giblin-Davis, R.M., Abad, R.G.: Insects on Palms. CAB eBooks (2001)

    Google Scholar 

  2. Alhammadi, M.S., Glenn, E.P.: Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI. Int. J. Remote Sens. 29(6), 1745–1765 (2008). https://doi.org/10.1080/01431160701395195

  3. Murphy, S.T., Briscoe, B.R.: The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of ipm. Biocontrol News Inf. 20(1), 35N–46N (1999)

    Google Scholar 

  4. Salama, H.S., Zaki, F.N., Abdel-Razek, A.S.: Ecological and biological studies on the red palm weevil rhynchophorus ferrugineus (olivier). Arch. Phytopathol. Plant Protect. 42(4), 392–399 (2009)

    Article  Google Scholar 

  5. Abraham, V.A., Koya, K.M.A., Kurian, C.: Integrated management of red palm weevil (Rhynchophorus ferrugineus F.) in coconut gardens. J. Plant. Crops 16, 159–162 (1989)

    Google Scholar 

  6. Faghih, A.A.: The biology of red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera, Curculionidae) in Saravan region (Sistan & Balouchistan province, Iran). Appl. Entomol. Phytopathol. 63(1/2), 16–18 (1996)

    Google Scholar 

  7. Afzan Azmi, W., Kah Wai, Y., Abu Bakar, A.: Fecundity, fertility and survival of red palm weevil (rhynchophorus ferrugineus) larvae reared on sago palm. Sains Malaysiana 44(10), 1371–1375 (2015)

    Google Scholar 

  8. El-Sabea, A.M.R., Faleiro, J.R., Abo-El-Saad, M.M.: The threat of red palm weevil rhynchophorus ferrugineus to date plantations of the gulf region in the middle-east: an economic perspective. Outlooks Pest Manage. 20(3), 131–134 (2009)

    Google Scholar 

  9. Al-Shawaf, A.M., Al-Shagag, A., Al-Bagshi, M., Al-Saroj, S., Al-Bather, S., Al-Dandan, A.M., Abdallah, A.B.: A quarantine protocol against red palm weevil rhynchophorus ferrugineus (olivier) (coleptera: Curculiondae) in date palm. J. Plant Protect. Res. 53(4), 409–415 (2013)

    Google Scholar 

  10. Faleiro, J.: A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int. J. Trop. Insect Sci. 26(3), 135–154 (2006). https://doi.org/10.1079/IJT2006113

  11. Scheffrahn, Rudolf H., Robbins, William P., Busey, Philip, Nan-Yao, Su, Mueller, Rolf K.: Evaluation of a novel, hand-held, acoustic emissions detector to monitor termites (isoptera: Kalotermitidae, rhinotermitidae) in wood. J. Econ. Entomol. 86(6), 1720–1729 (1993)

    Article  Google Scholar 

  12. Schlyter, F.: Detection dogs recognize pheromone from spruce bark beetle and follow it source. In: ESA 60th Annual Meeting Knoxville (2012)

    Google Scholar 

  13. Nakash, J., Osem, Y., Kehat, M.: A suggestion to use dogs for detecting red palm weevil (rhynchophorus ferrugineus) infestation in date palms in israel. Phytoparasitica 28(2), 153–155 (2000)

    Article  Google Scholar 

  14. Vadivambal, R., Jayas, D.S.: Applications of thermal imaging in agriculture and food industry—a review. Food Bioprocess Technol. 4(2), 186–199, Feb 2011

    Google Scholar 

  15. Prakash, A.: Thermal remote sensing: concepts, issues and applications. Int. Arch. Photogram. Remote Sens. 33, 239–243 (2000)

    Google Scholar 

  16. Sabins Jr., Lulla, K.: Remote sensing: principles and interpretation. Geocarto Int. 2(1), 66–66 (1987)

    Google Scholar 

  17. Ibrahim, A., Horiuchi, T., Tominaga, S., Ella Hassanien, A.: Spectral reflectance images and applications. In: Awad, A., Hassaballah, M. (eds.) Image Feature Detectors and Descriptors. Studies in Computational Intelligence, vol. 630. Springer, Cham (2016)

    Google Scholar 

  18. Ibrahim, A., Tominaga, S., Horiuchi, T.: Material classification for printed circuit boards by spectral imaging system. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.), Computational Color Imaging, pp. 216–225. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  19. Ibrahim, A., Tominaga, S., Horiuchi, S.: Unsupervised material classification of printed circuit boards using dimension-reduced spectral information. In: MVA2009 IAPR Conference on Machine Vision Applications, pp. 435–438 (2009)

    Google Scholar 

  20. Ibrahim, A., Tominaga, S., Horiuchi, T.: Spectral imaging method for material classification and inspection of printed circuit boards. Opt. Eng. 49, 49–49–10 (2010)

    Google Scholar 

  21. Ibrahim, A., Tominaga, S., Horiuchi, T.: Spectral invariant representation for spectral reflectance image. In: 2010 20th International Conference on Pattern Recognition, pp. 2776–2779, Aug 2010

    Google Scholar 

  22. Ibrahim, A., Tominaga, S., Horiuchi, T.: Invariant representation for spectral reflectance images and its application. EURASIP J. Image Video Process. 1(2), Jun 2011

    Google Scholar 

  23. Ibrahim, A., Tominaga, S., Horiuchi, T.: A spectral invariant representation of spectral reflectance. Opt. Rev. 18(2), 231–236, Mar 2011

    Google Scholar 

  24. Maldague, X.P.V., Jones, T.S., Kaplan, H., Marinetti, S., Prystay, M.: Chapter 2: fundamentals of infrared and thermal testing: part 1. principles of infrared and thermal testing, vol. 3. ASNT Press (2001)

    Google Scholar 

  25. Rogalski, A., Chrzanowski, K.: Infrared devices and techniques (revision). Metrol. Measure. Syst. 21(4), 565–618 (2014)

    Article  Google Scholar 

  26. Cohen, Y., Alchanatis, V., Prigojin, A., Levi, A., Soroker, V., Cohen, Y.: Use of aerial thermal imaging to estimate water status of palm trees. Prec. Agric. 13(1), 123–140 (2012)

    Article  Google Scholar 

  27. Alchanatis, V., Cohen, Y., Levin, N., Golomb, O., Soroker, V.: Detection of red palm weevil infected trees using thermal imaging. In: Precision Agriculture ’15, p. 322 (2015)

    Google Scholar 

  28. Suma, P., La Pergola, A., Cohen, Y., Cohen, Y., Alchanatis, V., Golomb,O., Goldshtein, E., Hetzroni, A., Galazan, L., Kontodimas, D., Pontikakos, C., Zorovoc, M., Soroker, V., Brandstetter, M.: Early detection and monitoring of red palm weevil: approaches and challenges. In: AFPP-Palm Pest Mediterranean Conference (2013)

    Google Scholar 

  29. Bokhari, U.G., Abuzuhira, R.: Diagnostic tests for redpalm weevil, Rhynchophorus ferrugineus infested datepalm trees. Arab J. Sci. Res. 10(3), 93–104 (1992)

    Google Scholar 

  30. Abe, F., Ohkusu, M., Kubo, T., Kawamoto, S., Sone, K., Hata, K.: Isolation of yeasts from palm tissues damaged by the red palm weevil and their possible effect on the weevil overwintering. Mycoscience 51(3), 215–223, May 2010

    Google Scholar 

  31. Al-doski, J., Mansor, S., Shafri, M., Zulhaidi, H.: Thermal imaging for pests detecting-a review. Int. J. Agric. Forest. Plant. 2, 10–30 (2016)

    Google Scholar 

  32. Ehrler, W.L.: Cotton leaf temperatures as related to soil water depletion and meteorological factors. Agro. J. 65, 404–409 (1973)

    Article  Google Scholar 

  33. Grant, O.M., Tronina, U., Jones, H.G., Manuela Chaves, M.: Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J. Exp. Botany 58(4), 815–825 (2007)

    Google Scholar 

  34. Mller, M., Alchanatis, V., Cohen, Y., Meron, M., Tsipris, J., Naor, A., Ostrovsky, V., Sprintsin, M., Cohen, S.: Use of thermal and visible imagery for estimating crop water status of irrigated grapevine*. J. Exp. Botany 58(4), 827–838 (2007)

    Article  Google Scholar 

  35. Alchanatis, V., Cohen, Y., Cohen, S., Moller, M., Sprinstin, M., Meron, M., Tsipris, J., Saranga, Y., Sela, E.: Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging. Prec. Agric. 11(1), 27–41 (2010)

    Article  Google Scholar 

  36. Cohen, Y., Alchanatis, V., Meron, M., Saranga, Y., Tsipris, J.: Estimation of leaf water potential by thermal imagery and spatial analysis*. J. Exp. Botany 56(417), 1843–1852 (2005)

    Article  Google Scholar 

  37. Meron, M., Tsipris, J., Orlov, V., Alchanatis, V., Cohen, Y.: Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces. Prec. Agric. 11(2), 148–162, Apr 2010

    Google Scholar 

  38. Tilling, A.K., OLeary, G.J., Ferwerda, J.G., Jones, S.D., Fitzgerald, G.J., Rodriguez, D., Belford, R.: Remote sensing of nitrogen and water stress in wheat. Field Crops Res. 104(1), 77–85 (2007). Groundbreaking Stuff- Proceedings of the 13th Australian Society of Agronomy Conference, 10–14 Sept 2006, Perth, Western Australia

    Google Scholar 

  39. Ben-Gal, A., Kool, D., Agam, N., van Halsema, G.E., Yermiyahu, U., Yafe, A., Presnov, E., Erel, R., Majdop, A., Zipori, I., Segal, E., Rger, S., Zimmermann, U., Cohen, Y., Alchanatis, V., Dag, A.: Whole-tree water balance and indicators for short-term drought stress in non-bearing barnea olives. Agric. Water Manage. 98(1), 124–133 (2010)

    Google Scholar 

  40. Berni, J.A.J., Zarco-Tejada, P.J., Sepulcre-Cant, G., Fereres, E., Villalobos, F.: Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sens. Environ. 113(11), 2380–2388 (2009)

    Article  Google Scholar 

  41. Sepulcre-Cant, G., Zarco-Tejada, P.J., Jimnez-Muoz, J.C., Sobrino, J.A., de Miguel, E., Villalobos, F.J.: Detection of water stress in an olive orchard with thermal remote sensing imagery. Agric. Forest Meteorol. 136(1), 31–44 (2006)

    Article  Google Scholar 

  42. El-Faki, M.S., El-Shafie, H.A.F., Al-Hajhoj, M.B.R.: Potentials for early detection of red palm weevil (coleoptera: Curculionidae)-infested date palm (arecaceae) using temperature differentials. Canad. Entomol. 148(2), 239–245 (2016)

    Google Scholar 

  43. Montoya, L.: Geo-data acquisition through mobile gis and digital video: an urban disaster management perspective. Environ. Model. Softw. 18(10), 869–876 (2003). Integrating Environmental Modelling and GI-Technology

    Google Scholar 

  44. Papadopoulos, Nikos T., Katsoyannos, Byron I., Nestle, David: Spatial autocorrelation analysis of a ceratitis capitata (diptera: Tephritidae) adult population in a mixed deciduous fruit orchard in northern greece. Environ. Entomol. 32(2), 319–326 (2003)

    Article  Google Scholar 

  45. Sciarretta, A., Trematerra, P., Baumgrtner, J.: Geostatistical analysis of cydia funebrana (lepidoptera: Tortricidae) pheromone trap catches at two spatial scales. Amer. Entomol. 47(3), 174–185 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhameed Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, A., Ibrahim, A., Hussein, S. (2019). Detection of Palm Tree Pests Using Thermal Imaging: A Review . In: Hassanien, A. (eds) Machine Learning Paradigms: Theory and Application. Studies in Computational Intelligence, vol 801. Springer, Cham. https://doi.org/10.1007/978-3-030-02357-7_12

Download citation

Publish with us

Policies and ethics