Advertisement

Rubbers Reinforced by POSS

  • Anna KosmalskaEmail author
  • Marian Zaborski
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

In this chapter, a brief account of the recent researches on the properties of POSS-containing polymeric materials, i.e., polyurethanes, resins, and thermoplastics, has been done. On this background, rubbers, generally known as elastomers, have been presented as an important class of polymers and a very essential material in industry due to their unique properties. The general characteristics of elastomers and the common classification of different types, including general-purpose, special-purpose, and specialty elastomers, together with the relevant examples, have been described. To extend service life, reduce cost and therefore improve service efficiency of elastomeric materials, various fillers have always been extensively used in the rubber industry and are addressed in the chapter. Particular attention has been given to POSS. The influence of POSS moieties in rubber matrix on the functional properties of the composites fabricated is discussed. Attempt has been made to explain the role of POSS surface functional groups in controlling the properties of POSS-containing materials, and the reinforcement mechanism is presented.

Keywords

Rubber Elastomer Reinforcement Filler Silsesquioxanes POSS 

References

  1. 1.
    Prza̧dka D, Jȩczalik J, Andrzejewska E, Szłapka M, Marciniec B, Dutkiewicz M (2013) Novel hybrid polyurethane/POSS materials via bulk polymerization. React Funct Polym 73(1):114–121.  https://doi.org/10.1016/j.reactfunctpolym.2012.09.006CrossRefGoogle Scholar
  2. 2.
    Bourbigot S, Turf T, Bellayer S, Duquesne S (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab 94:1230–1237CrossRefGoogle Scholar
  3. 3.
    Pellice SA, Fasce DP, Williams RJJ (2003) Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. J Polym Sci B Polym Phys 41:1451–1461  https://doi.org/10.1002/polb.10494CrossRefGoogle Scholar
  4. 4.
    Matejka L, Strachota A, Plestil J, Whelan P, Steinhart M, Slouf M (2004) Epoxy networks reinforced with polyhedral oligomeric silseqioxanes (POSS). Struct Morphol Macromol 37:9449–9456Google Scholar
  5. 5.
    Zhou Z, Cui L, Zhang Y, Zhang Y, Yin N (2008) Preparation and properties of POSS grafted polypropylene by reactive blending. Eur Polym J 44:3057–3066CrossRefGoogle Scholar
  6. 6.
    Waddon A, Zheng L, Farris R, Coughlin EB (2002) Nanostructured polyethylene-POSS copolymers: control of crystallization and aggregation. Nano Lett 2(10):1149–1155.  https://doi.org/10.1021/nl020208dCrossRefGoogle Scholar
  7. 7.
    Turri S, Levi M (2005) Wettability of polyhedral oligomeric silsesquioxane nanostructured polymer surfaces. Macromol Rapid Commun 26:1233–1236CrossRefGoogle Scholar
  8. 8.
    Tao W, Zhou H, Zhang Y, Li G (2008) Novel silsesquioxane mixture-modified high elongation. polyurethane with reduced platelet adhesion. Appl Surf Sci 254:2831–2836CrossRefGoogle Scholar
  9. 9.
    Mirchandani G, Waghoo G, Parmar R, Haseebuddin S, Ghosh SK (2009) Oligomeric silsesquioxane reinforced polyurethane with enhanced coating performance. Prog Org Coat 65(4):444–449.  https://doi.org/10.1016/j.porgcoat.2009.03.009CrossRefGoogle Scholar
  10. 10.
    Lewicki JP, Pielichowski K, Tremblot De La Croix P, Janowski B, Todd D, Liggat JJ (2010) Thermal degradation studies of polyurethane/POSS nanohybrid elastomers. Polym Degrad Stab 95(6):1099–1105CrossRefGoogle Scholar
  11. 11.
    Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45(16):5557–5568.  https://doi.org/10.1016/j.polymer.2004.06.008CrossRefGoogle Scholar
  12. 12.
    Liu YR, Huang YD, Liu L (2006) Effects of TriSilanolIsobutyl-POSS on thermal stability of methylsilicone resin. Polym Degrad Stab 91(11):2731–2738.  https://doi.org/10.1016/j.polymdegradstab.2006.04.031CrossRefGoogle Scholar
  13. 13.
    Liu YR, Huang YD, Liu L (2007) Thermal stability of POSS/methylsilicone nanocomposites. Comp Sci Tech 67:2864–2876CrossRefGoogle Scholar
  14. 14.
    Fina A, Monticelli O, Camino G (2010) POSS-based hybrids by melt/reactive blending. J Mater Chem 20:9297–9305.  https://doi.org/10.1039/C0JM00480DCrossRefGoogle Scholar
  15. 15.
    Zhao J, Fu Y, Liu S (2008) Polyhedral Oligomeric Silsesquioxane (POSS)-modified thermoplastic and thermosetting nanocomposites: a review. Polym Polym Comp 16(8):483–500Google Scholar
  16. 16.
    Chen JH, Yao BX, Su WB Yang YB (2007) Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 48(6):1756–1769CrossRefGoogle Scholar
  17. 17.
    Chen JH, Chiou YD (2006) Crystallization behavior and morphological development of isotactic polypropylene blended with nanostructured polyhedral oligomeric silsesquioxane molecules. J Polym Sci Part B Polym Phys 44:2122–2134CrossRefGoogle Scholar
  18. 18.
    Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 45(14):4953–4968CrossRefGoogle Scholar
  19. 19.
    Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Philips S, Blanski R, Ruth P (2001) Crystallization studiem of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci Part B: Polym Phys 39:2727–2739CrossRefGoogle Scholar
  20. 20.
    Huang JC, He CB, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial, interaction, thermal properties and mechanical properties. Polymer 44:4491–4499CrossRefGoogle Scholar
  21. 21.
    Fina A, Abbenhuis HCL, Tabuani D, Camino G (2006) Metal functionalized POSS as fire retardants in polypropylene. Polym Degrad Stab 91:2275–2281CrossRefGoogle Scholar
  22. 22.
    Joshi M, Butola BS, Simon G, Kukaleva N (2006) Rheological and viscoelastic behavior of HDPE/Octamethyl-POSS nanocomposites. Macromolecules 39(5):1839–1849.  https://doi.org/10.1021/ma051357wCrossRefGoogle Scholar
  23. 23.
    Zhou Q, Pramoda KP, Lee JM, Wang K, Loo LS (2011) Role of interface in dispersion and surface energetics of polymer nanocomposites containing hydrophilic POSS and layered silicates. J Colloid Interface Sci 355(1):222–230.  https://doi.org/10.1016/j.jcis.2010.12.010CrossRefGoogle Scholar
  24. 24.
    Chen D, Yi S, Fang P, Zhong Y, Huang C, Wu X (2011) Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using octa[(trimethoxysilyl)ethyl]-POSS as cross-linker. React Funct Polym 71:502–511CrossRefGoogle Scholar
  25. 25.
    Chen D, Yi S, Wu W, Zhong Y, Liao J, Huang C (2010) Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using vinyl-POSS derivatives as cross-linking agents. Polymer 51:3867–3878CrossRefGoogle Scholar
  26. 26.
    Schubert U, Huesing N, Lorenz A (1995) Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem Mater 7(11):2010–2027.  https://doi.org/10.1021/cm00059a007CrossRefGoogle Scholar
  27. 27.
    Joshi M, Butola BS (2004) Polymeric nanocomposites—Polyhedral oligomeric silsesquioxanes (POSS) as hybryd nanofillers. J Macromol Sci Part C Polym Rev 44(4):389–410.  https://doi.org/10.1081/MC-200033687CrossRefGoogle Scholar
  28. 28.
    Phillips S, Haddad T, Tomczak S (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8:21–29.  https://doi.org/10.1016/j.cossms.2004.03.002CrossRefGoogle Scholar
  29. 29.
    Bhowmick AK, Stephens HL (2001) Handbook of elastomers, 2nd edn. Marcel Dekker Inc, New YorkGoogle Scholar
  30. 30.
    Franta I (ed) Elastomers and rubber compounding materials. Manufacture, properties and applications, ISBN 9780444601186, Elsevier, 2012Google Scholar
  31. 31.
    Paul DR, Mark JE (2010) Fillers for polysiloxane (‘‘silicone”) elastomers. Prog Polym Sci 35:893–901CrossRefGoogle Scholar
  32. 32.
    Mark JE, Erman B (2007) Rubber-like elasticity: a molecular primer, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. 33.
    Bokobza L (2007) Polymer 48(17):4907–4920CrossRefGoogle Scholar
  34. 34.
    Payne AR, Whittaker RE (1971) Rubber Chem Technol 44:440CrossRefGoogle Scholar
  35. 35.
    Waddell WH, Beauregard PA, Evans LR (1995) Tire Technol Int 1995:24Google Scholar
  36. 36.
    Wang MJ (1999) Rubber Chem Technol 72:430CrossRefGoogle Scholar
  37. 37.
    Pliskin I, Tokit NJ (1972) Appl Polym Sci 16:173CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Testing 26(3):369–377CrossRefGoogle Scholar
  40. 40.
    Buchanan RA, Weislogel OE, Russell CR, Rist CE (1968) Starch in rubber. Zinc starch xanthate in latex masterbatching. Prod Res Dev 7(2):155–158.  https://doi.org/10.1021/i360026a013CrossRefGoogle Scholar
  41. 41.
    Buchanan RA, Kwolek WF, Katz HC (1971) Die Starke 23:350CrossRefGoogle Scholar
  42. 42.
    Buchanan RA, Katz HC, Russell CR, Rist CE (1971) Rubber J 10:28Google Scholar
  43. 43.
    Buchanan RA (1974) Peoria Illinois Die Starke 26(5):165CrossRefGoogle Scholar
  44. 44.
    Buchanan RA, Doane WM, Russel CR, Kwolek WF (1975) Elastomers Plast 7:95CrossRefGoogle Scholar
  45. 45.
    Abbott TP, Doane WM, Russell CR (1973) Rubber Age 8:43Google Scholar
  46. 46.
    Rubber containing starch reinforcement and tire having component thereof. EP1074582 A1 (2001)Google Scholar
  47. 47.
    Farm tire with tread of rubber composition containing starch/plasticizer composite. EP1514900 A1 (2005)Google Scholar
  48. 48.
    Rouilly A, Rigal L, Gilbert RG (2004) Polymer 45:7813CrossRefGoogle Scholar
  49. 49.
    Wu CS (2005) Macromol Biosci 5:352PubMedCrossRefGoogle Scholar
  50. 50.
    Wang S, Yu J, Yu J (2005) Polym Degrad Stab 87:395CrossRefGoogle Scholar
  51. 51.
    Patel NK, Pandya PD, Kehariya H, Patel H, Sinha VK (2005) Int J Polym Mater 54:985CrossRefGoogle Scholar
  52. 52.
    Qi Q et al (2006) Modification of starch for high performance elastomer. Polymer 47:3896–3903CrossRefGoogle Scholar
  53. 53.
    Gura DV, Sokolova LA, Ovcharov VI, Soroka PI (2015) Assessing the properties of elastomer composites filled with hybrid filler. Int Polym Sci Technol 42(3):T23–T25CrossRefGoogle Scholar
  54. 54.
    Barashkova II, Komova NN, Motyakin MV, Potapov EE, Wasserman AM (2014) Shungite-elastomer interface layers. In: Doklady Physical Chemistry, vol 456. Pleiades Publishing, pp 83–85Google Scholar
  55. 55.
    Barashkova II et al (2015) EPR Spin Probe Study of Local Mobility at the Shungite/Elastomer Interface. Appl Magn Reson 46(12):1421–1427CrossRefGoogle Scholar
  56. 56.
    Kornev YuV et al (2013) Investigating the influence of the degree of dispersion of mineral shungite on the properties of elastomeric materials based on butadiene-styrene rubber. Int Polym Sci Technol 40(3):T27–T32CrossRefGoogle Scholar
  57. 57.
    Donnet JB (2003) Nano and microcomposites of polymers elastomers and their reinforcement. Compos Sci Technol 63(8):1085–1088.  https://doi.org/10.1016/S0266-3538(03)00028-9CrossRefGoogle Scholar
  58. 58.
    Ponnamma D, Maria HJ, Chandra AK, Thomas S (2013) Rubber Nanocomposites: latest trends and concepts. Adv Elastomers II 12:69–107.  https://doi.org/10.1007/978-3-642-20928-4_3CrossRefGoogle Scholar
  59. 59.
    Thomas S, Maria HJ (eds) Progress in rubber nanocomposites, Woodhead Publishing, Cambridge 2016Google Scholar
  60. 60.
    De Falco A, Goyanes S, Rubiolo GH, Mondragon I, Marzocca MA (2007) Carbon nanotubes as reinforcement of styrene-butadiene rubber. Appl Surf Sci 254(1):262–265CrossRefGoogle Scholar
  61. 61.
    Cardoen G, Coughlin EB (2004) Hemi-telechelic polystyrene-POSS copolymers as model systems for the study of well-defined inorganic/organic hybryd materials. Macromolecules 37:5123–5126CrossRefGoogle Scholar
  62. 62.
    Tan BH, Hussain H, Leong YW, Lin TT, Tjiu WW, He C (2013) Tuning self-assembly of hybrid PLA-P(MA-POSS) block copolymers in solution via stereocomplexation. Polym Chem 4:1250–1259CrossRefGoogle Scholar
  63. 63.
    Bliznyuk V, Tereshchenko T, Gumenna M, Gomza YP, Shevchuk A, Klimenko N et al (2008) Structure of segmented poly (ether urethane)s containing amino and hydroxyl functionalized polyhedral oligomeric silsesquioxanes (POSS). Polymer 49:2298–2305CrossRefGoogle Scholar
  64. 64.
    Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696CrossRefGoogle Scholar
  65. 65.
    Zhang W, Camino G, Yang R (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Prog Poly Sci 67:77–125.  https://doi.org/10.1016/j.progpolymsci.2016.09.011CrossRefGoogle Scholar
  66. 66.
    Laik S, Galy J, Gérard JF, Monti M, Camino G (2016) Fire behaviour and morphology of epoxy matrices designed for composite materials processed by infusion. Polym Degrad Stab 127:44–55CrossRefGoogle Scholar
  67. 67.
    Rubber compound containing a polyhedral oligomeric silsesquioxanes. Pat. US 6852794 B2 (2005)Google Scholar
  68. 68.
    Method for making alkoxy-modified silsesquioxanes. Pat. US 7915368 B2 (2011)Google Scholar
  69. 69.
    Amino alkoxy-modified silsesquioxane and method of preparation. Pat. US 8513371 B2(2013)Google Scholar
  70. 70.
    Compouding silica-reinforced rubber with low volatile organic compounds (VOC) emission. Pat. US9403969 B2(2016)Google Scholar
  71. 71.
    Amino alkoxy-modified silsesquioxane adhesives for improved metal adhesion and metal adhesion retention to cured rubber. Pat. US 8794282 B2(2014)Google Scholar
  72. 72.
    Rubber composition comprising a polyhedral oligomeric silsesquioxane additive. Pat. WO 2006027618 A1(2006)Google Scholar
  73. 73.
    Zhao Y, Jiang X, Zhang X, Hou L (2017) Toughened elastomer/polyhedral oligomeric silsesquioxane (POSS)-intercalated rectorite nanocomposites: preparation, microstructure, and mechanical properties. Polym Compos 38:E443–E450.  https://doi.org/10.1002/pc.23784CrossRefGoogle Scholar
  74. 74.
    Deng H et al (2012) Quaternized chitosan-layered silicate intercalated composites based nanofibrous mats and their antibacterial activity. Carbohydr Polym 89(2):307–313PubMedCrossRefGoogle Scholar
  75. 75.
    Wang X et al (2010) Preparation and characterization of new quaternized carboxymethyl chitosan/rectorite nanocomposite. Compos Sci Technol 70(7):1161–1167CrossRefGoogle Scholar
  76. 76.
    Li W et al (2013) Poly(vinyl alcohol)/sodium alginate/layered silicate based nanofibrous mats for bacterial inhibition. Carbohydr Polym 92(2):2232–2238PubMedCrossRefGoogle Scholar
  77. 77.
    Fox DM, Maupin PH, Harris RH Jr, Gilman JW, Eldred DV, Katsoulis D, Trulove PC, De Long HC (2007) Use of a polyhedral oligomeric silsesquioxane (POSS)-imidazolium cation as an organic modifier for montmorillonite. Langmuir 23:7707–7714PubMedCrossRefGoogle Scholar
  78. 78.
    Fox DM, Harris RH Jr, Bellayer S, Gilman JW, Gelfer MY, Hsaio BS, Maupin PH, Trulove PC, De Long HC (2011) The pillaring effect of the 1,2-Dimethyl-3(benzyl ethyl iso-butyl POSS) imidazolium cation in polymer/montmorillonite nanocomposites. Polymer 52:5335–5343CrossRefGoogle Scholar
  79. 79.
    Wan C, Yu J, Shi X, Huang L (2006) Preparation of poly(propylene carbonate)/organophilic rectorite nanocomposites via direct melt intercalation. Trans Nonferrous Metals Soc Chin 16:s508–s511.  https://doi.org/10.1016/S1003-6326(06)60245-8CrossRefGoogle Scholar
  80. 80.
    Li B, Dong FX, Wang XL, Yang J, Wang DY, Wang YZ (2009) Organically modified rectorite toughened poly(lactic acid): nanostructures, crystallization and mechanical properties. Eur Polym J 45(11):2996–3003. doi.org/ https://doi.org/10.1016/j.eurpolymj.2009.08.015CrossRefGoogle Scholar
  81. 81.
    Ma XY, Liang GZ, Lu HJ, Liu HL, Huang Y (2005) Novel intercalated nanocomposites of polypropylene, organic rectorite, and poly(ethylene octene) elastomer: morphology and mechanical properties. J Appl Polym Sci 97:1907–1914.  https://doi.org/10.1002/app.21931CrossRefGoogle Scholar
  82. 82.
    Ma XY, Liang GZ, Liu HL, Fei JY, Huang Y (2005) Novel intercalated nanocomposites of polypropylene/organic-rectorite/polyethylene-octene elastomer: rheology, crystallization kinetics, and thermal properties. J Appl Polym Sci 97:1915–1921.  https://doi.org/10.1002/app.21938CrossRefGoogle Scholar
  83. 83.
    Zhao L et al (2018) Morphology and thermomechanical properties of natural rubber vulcanizates containing octavinyl polyhedral oligomeric silsesquioxane. Compos Part B 139:40–46.  https://doi.org/10.1016/j.compositesb.2017.11.052CrossRefGoogle Scholar
  84. 84.
    Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22(5):1733–1746CrossRefGoogle Scholar
  85. 85.
    Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32(14):1032–1046PubMedCrossRefGoogle Scholar
  86. 86.
    Li YW, Dong XH, Guo K, Wang Z, Chen ZR, Wesdemiotis C et al (2012) Synthesis of shape amphiphiles based on POSS tethered with two symmetric/asymmetric polymer tails via sequential “Grafting-from” and thiol–ene “click” chemistry. ACS Macro Lett 1(7):834–839CrossRefGoogle Scholar
  87. 87.
    Wei K, Wang L, Li L, Zheng SX (2015) Synthesis and characterization of bead-like poly(Nisopropylacrylamide) with double decker silsesquioxanes in the main chains. Polym Chem 6(2):256–269CrossRefGoogle Scholar
  88. 88.
    Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2015) Nanoscale order and crystallization in POSS–PCL shape memory molecular networks. Macromolecules 48(16):5770–5779CrossRefGoogle Scholar
  89. 89.
    Franczyk A, He H, Burdyńska J, Hui C, Matyjaszewski K, Marciniec B (2014) Synthesis of high molecular weight polymethacrylates with polyhedral oligomeric silsesquioxane moieties by atom transfer radical polymerization. ACS Macro Lett 3(8):799–802CrossRefGoogle Scholar
  90. 90.
    Zhang WA, Muller AHE (2013) Architecture, self-assembly and properties of well-defined hybridpolymers basedonpolyhedraloligomericsilsesquioxane (POSS) Prog Polym Sci 38(8):1121–62Google Scholar
  91. 91.
    Shockey EG, Bolf AG, Jones PF, Schwab JJ, Chaffee KP, Haddad TS et al (1999) Functionalized polyhedral oligosilsesquioxane (POSS) macromers: new graftable POSS hydride, POSS a-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS-siloxane triblocks. Appl Organomet Chem 13(4):311–327CrossRefGoogle Scholar
  92. 92.
    Sun DX, Li XJ, Zhang YH, Li YW (2011) Effect of modified nano-silica on the reinforcement of styrene butadiene rubber composites. J Macromol Sci B 50(9):1810–1821CrossRefGoogle Scholar
  93. 93.
    Chen D, Liu Y, Huang C (2012) Synergistic effect between POSS and fumed silica on thermal stabilities and mechanical properties of room temperature vulcanized (RTV) silicone rubbers. Polym Degrad Stab 97:308–315.  https://doi.org/10.1016/j.polymdegradstab.2011.12.016CrossRefGoogle Scholar
  94. 94.
    Shi Y, Huang G, Liu Y, Qu Y, Zhang D, Dang Y (2013) Synthesis and thermal properties of novel room temperature vulcanized (RTV) silicone rubber containing POSS units in polysioxane main chains. J Polym Res 20(9):245.  https://doi.org/10.1007/s10965-013-0245-yCrossRefGoogle Scholar
  95. 95.
    Zhang Y, He J, Yang R (2016) The effects of phosphorus-based flame retardants and octaphenyl polyhedral oligomeric silsesquioxane on the ablative and flame-retardation properties of room temperature vulcanized silicone rubber insulating composites. Polym Degrad Stab 125:140–147. doi.org/ https://doi.org/10.1016/j.polymdegradstab.2015.12.007CrossRefGoogle Scholar
  96. 96.
    Liu L, Tian M, Zhang W, Zhang LQ, Mark JE (2007) Crystallization and morphology study of polyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by melt blending. Polymer 48:3201–3212CrossRefGoogle Scholar
  97. 97.
    Meng Y, Wei Z, Liu L, Liu L, Zhang L, Nishi T, Ito K (2013) Significantly improving the thermal stability and dispersion morphology of polyhedral oligomeric silsesquioxane/polysiloxane composites by in-situ grafting re action. Polymer 54:3055–3064CrossRefGoogle Scholar
  98. 98.
    Chen DZ, Nie JR, Yi SP, Wu WB, Zhong YL, Liao J, Huang C (2010) Thermal behaviour and mechanical properties of novel RTV silicone rubbers using divinyl-hexa[(trimethoxysilyl)ethyl]-POSS as cross-linker. Polym Degrad Stab 95:618–626CrossRefGoogle Scholar
  99. 99.
    Chen DZ, Liu Y, Huang C (2012) Synergistic effect between POSS and fumed silica on thermal stabilities and mechanical properties of room temperature vulcanized (RTV) silicone rubbers. Polym Degrad Stab 97:308–315CrossRefGoogle Scholar
  100. 100.
    Sirin H, Kodal M, Karaagac B, Ozkoc G (2016) Effects of octamaleamic acid-POSS used as the adhesion enhancer on the properties of silicone rubber/silica nanocomposites. Composites Part B 98:370–381.  https://doi.org/10.1016/j.compositesb.2016.05.024CrossRefGoogle Scholar
  101. 101.
    Stockelhuber KW, Das A, Jurk R, Heinrich G (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51(9):1954–1963CrossRefGoogle Scholar
  102. 102.
    Dong F, Zhao P, Dou R, Feng S (2018) Amine-functionalized POSS as cross-linkers of polysiloxane containing γ-chloropropyl groups for preparing heat-curable silicone rubber. Mater Chem Phys 208:19–27.  https://doi.org/10.1016/j.matchemphys.2018.01.024CrossRefGoogle Scholar
  103. 103.
    Madsen FB, Yu L, Daugaard AE, Hvilsted S, Skov AL (2015) A new soft di electric silicone elastomer matrix with high mechanical integrity and low losses. RSC Adv 5:10254–10259CrossRefGoogle Scholar
  104. 104.
    Madsen FB, Yu L, Mazurek P, Skov AL (2016) A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers. Smart Mater Struct 25:075018–075032CrossRefGoogle Scholar
  105. 105.
    Diao S, Dong FY, Meng J, Ma PQ, Zhao YY, Feng SY (2015) Preparation and properties of heat-curable silicone rubber through chloropropyl/amine crosslinking reactions. Mater Chem Phys 153:161–167CrossRefGoogle Scholar
  106. 106.
    Dong FY, Diao S, Ma DP, Zhang SY, Feng SY (2015) Preparation and characterization of 3-chloropropyl polysiloxane-based heat-curable silicone rubber using polyamidoamine dendrimers as cross-linkers. React Funct Polym 96:14–20CrossRefGoogle Scholar
  107. 107.
    Dong FY, Ma DP, Feng SY (2016) Aminopropyl-modified silica as cross-linkers of polysiloxane containing chloropropyl groups for preparing heat-curable silicone rubber. Polym Test 52:124–132CrossRefGoogle Scholar
  108. 108.
    Choi J, Tamaki R, Kim SG, Laine R (2003) Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chem Mater 15:3365–3375CrossRefGoogle Scholar
  109. 109.
    Iyer P, Iyer G, Coleman MC (2010) Gas transport properties of polyimide-POSS nanocomposites. J Membr Sci 358:26–32CrossRefGoogle Scholar
  110. 110.
    Zhang QH, He H, Xi K, Huang X, Yu XH, Jia XD (2011) Synthesis of N-phenylaminomethyl POSS and its utilization in polyurethane. Macromolecules 44:550–557CrossRefGoogle Scholar
  111. 111.
    Strąkowska A, Kosmalska A, Zaborski M (2012) Silsesquioxanes as modifying agents of methylvinylsilicone rubber. Mater Sci Forum 714:183–189.  https://doi.org/10.4028/www.scientific.net/MSF.714.183CrossRefGoogle Scholar
  112. 112.
    Zaborski M, Strąkowska A, Kosmalska A, Maciejewski H, Michał Dutkiewicz (2013) POSS compounds as modifiers and additives for elastomeric composites. Polimery 58:772–782.  https://doi.org/10.14314/polimery.2013.772CrossRefGoogle Scholar
  113. 113.
    Joshi V, Srividhya M, Dubey M, Ghosh AK, Saxena A (2013) Effect of functionalization on dispersion of POSS-silicone rubber nanocomposites. J Appl Polym Sci 130:92–99.  https://doi.org/10.1002/app.39112CrossRefGoogle Scholar
  114. 114.
    Yang Z, Liu J, Liao R, Yang G, Wu X, Tang Z, Guo B, Zhang L, Ma Y, Nie Q, Wang F (2016) Rational design of covalent interfaces for graphene/elastomer nanocomposites. Compos Sci Technol 132:68–75CrossRefGoogle Scholar
  115. 115.
    Zhong B, Jia Z, Luo Y, Jia D (2015) A method to improve the mechanical performance of styrene-butadiene rubber via vulcanization accelerator modified silica. Compos Sci Technol 117:46–53CrossRefGoogle Scholar
  116. 116.
    Rooj S, Das AStockelhuber KW, Wießner S, Fischer D, Reuter U, Heinrich G (2015) Expanded organoclay assisted dispersion and simultaneous structural alterations of multiwall carbon nanotube (MWCNT) clusters In natural rubber. Compos Sci Technol 107:36–43CrossRefGoogle Scholar
  117. 117.
    Le H, Parsaker M, Sriharish M, Henning S, Menzel M, Wiessner S, Das A, Do Q, Heinrich G, Radusch H (2015) Effect of rubber polarity on selective wetting of carbon nanotubes in ternary blends. Express Polym Lett 9(11):960–971CrossRefGoogle Scholar
  118. 118.
    Liu Q, Ren W, Zhang Y, Zhang Y (2012) A study on the curing kinetics of epoxycyclohexyl polyhedral oligomeric silsesquioxanes and hydrogenated carboxylated nitrile rubber by dynamic differential scanning calorimetry. J Appl Polym Sci 123(5):3128–3136CrossRefGoogle Scholar
  119. 119.
    Liu Q, Ren W, Zhang Y, Zhang Y (2011) Curing reactions and properties of organicinorganic composites from hydrogenated carboxylated nitrile rubber and epoxycyclohexyl polyhedral oligomeric silsesquioxanes. Polym Int 60(3):422–429CrossRefGoogle Scholar
  120. 120.
    Konnola R, Nair CPR, Joseph K (2016) Cross-linking of carboxyl-terminated nitrile rubber with polyhedral oligomeric silsesquioxane. J Therm Anal Calorim 123(2):1479–1489CrossRefGoogle Scholar
  121. 121.
    Sahoo S, Bhowmick AK (2007) Polyhedral oligomeric silsesquioxane (POSS) nanoparticles as new crosslinking agent for functionalized rubber. Rubber Chem Technol 80(5):826–837CrossRefGoogle Scholar
  122. 122.
    Yang S, Fan H, Jiao Y, Cai Z, Zhang P, Li Y (2017) Improvement in mechanical properties of NBR/LiClO4/POSS nanocomposites by constructing a novel network structure. Compos Sci Technol 138:161–168.  https://doi.org/10.1016/j.compscitech.2016.12.003CrossRefGoogle Scholar
  123. 123.
    Kosmalska A, Strąkowska A, Zaborski M (2012) Properties of POSS/HNBR elastomer nanocomposites. Mater Sci Forum 714:175–181.  https://doi.org/10.4028/www.scientific.net/MSF.714.175CrossRefGoogle Scholar
  124. 124.
    Sperling L (2001) Physical polymer science, 3rd edn. Wiley Interscience and Sons Inc, New YorkGoogle Scholar
  125. 125.
    Odian G (2001) Principles of polymerization, 3rd edn. Wiley Interscience and Sons Inc, New YorkGoogle Scholar
  126. 126.
    Drazkowski DB, Lee A, Haddad TS, Cookson DJ (2006) Chemical substituent effects on morphological transitions in styrene − butadiene − styrene triblock copolymer grafted with polyhedral oligomeric silsesquioxanes. Macromolecules 39(5):1854–1863CrossRefGoogle Scholar
  127. 127.
    Fu BX, Lee A, Haddad TS (2004) Styrene − butadiene − styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 37(14):5211–5218.  https://doi.org/10.1021/ma049753mCrossRefGoogle Scholar
  128. 128.
    Drazkowski DB, Lee A, Haddad TS (2007) Morphology and phase transitions in styrene − butadiene − styrene triblock copolymer grafted with isobutyl-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 40(8):2798–2805.  https://doi.org/10.1021/ma062393dCrossRefGoogle Scholar
  129. 129.
    Salamore J (1996) Polymeric materials encyclopedia. CRC Press, New York, pp 2264–2271Google Scholar
  130. 130.
    Seurer B, Coughlin EB (2008) Ethylene–propylene–silsesquioxane thermoplastic elastomers. Macromol Chem Phys 209(12):1198–1209CrossRefGoogle Scholar
  131. 131.
    Cong C, Cui C, Meng X, Zhou Q (2013) Structure and property of tetrafluoroethylene-propylene elastomer-OVPOSS composites. J Appl Polym Sci 130(2):1281–1288.  https://doi.org/10.1002/app.39223CrossRefGoogle Scholar
  132. 132.
    Cong C, Cui C, Meng X, Zhou Q (2014) Stability of POSS crosslinks and aggregates in tetrafluoroethylene-propylene elastomers/OVPOSS composites exposed to hydrochloric acid solution. Polym Degrad Stab 100:29–36.  https://doi.org/10.1016/j.polymdegradstab.2013.12.032CrossRefGoogle Scholar
  133. 133.
    Kostov GK, Chr PetrovP (1992) Study of synthesis and properties of tetrafluoroethylene-propylene copolymers. J Polym Sci Part A Polym Chem 30:1083–1088CrossRefGoogle Scholar
  134. 134.
    Aminabhavi TM, Harlapur SF, Balundgi RH, Dale Ortego J (1998) Theoretical and experimental investigations of molecular migration and diffusion kinetics of organic esters into tetrafluoroethylene/propylene copolymer membranes. Can J Chem Eng 76:104–112CrossRefGoogle Scholar
  135. 135.
    Kulkarni SB, Kariduraganavar MY, Aminabhavi TM (2003) Sorption, diffusion, and permeation of esters, aldehydes, ketones, and aromatic liquids into tetrafluoroethylene/propylene at 30, 40, and 50 °C. J Appl Polym Sci 89(12):3201–3209.  https://doi.org/10.1002/app.2376CrossRefGoogle Scholar
  136. 136.
    Niu M et al (2013) Novel hybrid copolymer by incorporating POSS into hard segments of thermoplastic elastomer SEBS via click coupling reaction. Polymer 54:2658–2667.  https://doi.org/10.1016/j.polymer.2013.02.042CrossRefGoogle Scholar
  137. 137.
    Zeng QH, Liu QL, Broadwell I, Zhu AM, Xiong Y, Tu XP (2010) Anion-exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells. J Membr Sci 349:237–243.  https://doi.org/10.1016/j.memsci.2009.11.051CrossRefGoogle Scholar
  138. 138.
    Xu W, Cheng Z, Zhang Z, Zhang L, Zhu X (2011) Modification of SEBS rubber via iron-mediated AGET ATRP in the presence of limited amounts of air. React Funct Polym 71(6):634–640.  https://doi.org/10.1016/j.reactfunctpolym.2011.03.008CrossRefGoogle Scholar
  139. 139.
    Yadav SK, Mahapatra SS, Cho JW, Lee JY (2010) Functionalization of multiwalled carbon nanotubes with poly(styrene-b-(ethylene-co-butylene)-b-styrene) by click coupling. J Phys Chem C 114(26):11395–11400.  https://doi.org/10.1021/jp1028382CrossRefGoogle Scholar
  140. 140.
    Cao Y, Lai Z, Feng J, Wu P (2011) Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers. J Mater Chem 21(25):9271–9278.  https://doi.org/10.1039/C1JM10420ACrossRefGoogle Scholar
  141. 141.
    Allen NS, Edge J, Wilkinson A, Liauw CM, Mourelatou D, Barrio J et al (2001) Degradation and stabilisation of styrene-ethylene-butadiene-styrene (SEBS) block copolymer. Polym Degrad Stab 71:113–122CrossRefGoogle Scholar
  142. 142.
    Allen NS, Luengo C, Edge M, Wilkinson A, Parellada MD, Barrio JA et al (2004) Photooxidation of styrene-ethylene-butadiene-styrene (SEBS) block copolymer. J Photochem Photobiol A Chem 162:41–51.  https://doi.org/10.1016/S1010-6030(03)00311-3CrossRefGoogle Scholar
  143. 143.
    Darling SB (2007) Directing the self-assembly of block copolymers. Prog Polym Sci 32(10):1152–1204.  https://doi.org/10.1016/j.progpolymsci.2007.05.004CrossRefGoogle Scholar
  144. 144.
    Shankar R, Krishnan AK, Ghosh TK, Spontak RJ (2008) Triblock copolymer organogels as high performance dielectric elastomers. Macromolecules 41(16):6100–6109.  https://doi.org/10.1021/ma071903gCrossRefGoogle Scholar
  145. 145.
    Ganguly A, Bhowmick AK (2009) Quantification of surface forces of thermoplastic elastomeric nanocomposites based on poly(styrene-ethylene-co-butylene-styrene) and clay by atomic force microscopy. J Appl Polym Sci 111:2104–2115.  https://doi.org/10.1002/app.29268CrossRefGoogle Scholar
  146. 146.
    Koh K, Sugiyama S, Morinaga T, Ohno K, Tsujii Y, Fukuda T et al (2005) Precision synthesis of a fluorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend film with poly(methyl methacrylate). Macromolecules 38(4):1264–1270.  https://doi.org/10.1021/ma047636lCrossRefGoogle Scholar
  147. 147.
    Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC et al (2007) Designing superoleophobic surfaces. Science 318(5856):1618–1622.  https://doi.org/10.1126/science.1148326CrossRefPubMedGoogle Scholar
  148. 148.
    Spoljaric S, Shanks RA (2012) Novel elastomer dye-functionalised POSS nanocomposites: enhanced colourimetric, thermomechanical and thermal properties. Express Polymer Letters 6(5):354–372.  https://doi.org/10.3144/expresspolymlett.2012.39CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryLodz University of Technology, Institute of Polymer and Dye TechnologyLodzPoland

Personalised recommendations