Skip to main content

Porous Hybrid Materials with POSS

  • Chapter
  • First Online:
Polymer/POSS Nanocomposites and Hybrid Materials

Abstract

Massive applications and advantages of porous hybrid materials based on polyhedral oligomeric silsesquioxane (POSS) have generated enormous research interest in the development of porous POSS hybrid materials in both the industries and the academics. POSS, a well-known nanoporous inorganic building block materials with the formula (RSiO1.5)n, (n ≥ 6) including definite cage-shaped three-dimensional structures is surrounded by organic functional groups, which were utilized to produce porous hybrid materials with organic molecules via copolymerization, grafting, and blending and also with metals by coordination. This chapter reviews the properties and importance of porosity of POSS and POSS hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kickelbick G (2014) Hybrid materials–past, present and future. Hybrid Mater 1

    Google Scholar 

  2. Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. In: supramolecular polymers polymeric betains oligomers. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 225–296. https://doi.org/10.1007/12_077

    Chapter  Google Scholar 

  3. Seçkin T, Köytepe S, Adıgüzel Hİ (2008) Molecular design of POSS core star polyimides as a route to low-κ dielectric materials. Mater Chem Phys 112:1040–1046

    Article  CAS  Google Scholar 

  4. Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) Highly porous polyhedral silsesquioxane polymers. Synth charact J Am Chem Soc 120:8380–8391

    Article  CAS  Google Scholar 

  5. Bassindale AR, Gentle TE (1993) Siloxane and hydrocarbon octopus molecules with silsesquioxane cores. J Mater Chem 3:1319–1325

    Article  Google Scholar 

  6. Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes:[(c-C5H9) 7Si7O9 (OH) 3],[(c-C7H13) 7Si7O9 (OH) 3], and [(c-C7H13) 6Si6O7 (OH) 4]. Organometallics 10:2526–2528

    Article  CAS  Google Scholar 

  7. Ro HW, Soles CL (2011) Silsesquioxanes in nanoscale patterning applications. Mater Today 14:20–33

    Article  CAS  Google Scholar 

  8. Zhou H, Ye Q, Xu J (2017) Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater Chem Front 1:212–230

    Article  CAS  Google Scholar 

  9. Hurd CB (1946) Studies on siloxanes. I. the specific volume and viscosity in relation to temperature and constitution. J Am Chem Soc 68:364–370

    Article  CAS  Google Scholar 

  10. Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications

    Article  CAS  Google Scholar 

  11. Wang F, Lu X, He C (2011) Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. J Mater Chem 21:2775–2782

    Article  CAS  Google Scholar 

  12. Zhang W, Müller AH (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38:1121–1162

    Article  CAS  Google Scholar 

  13. Lee J, Cho H-J, Jung B-J, Cho NS, Shim H-K (2004) Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane. Macromolecules 37:8523–8529

    Article  CAS  Google Scholar 

  14. Zhang K, Zhuang Q, Liu X, Yang G, Cai R, Han Z (2013) A new benzoxazine containing benzoxazole-functionalized polyhedral oligomeric silsesquioxane and the corresponding polybenzoxazine nanocomposites. Macromolecules 46:2696–2704

    Article  CAS  Google Scholar 

  15. Ariraman M, Alagar M (2014) Design of lamellar structured POSS/BPZ polybenzoxazine nanocomposites as a novel class of ultra low-k dielectric materials. Rsc Adv 4:19127–19136

    Article  CAS  Google Scholar 

  16. Chaikittisilp W, Kubo M, Moteki T, Sugawara-Narutaki A, Shimojima A, Okubo T (2011) Porous siloxane–organic hybrid with ultrahigh surface area through simultaneous polymerization–destruction of functionalized cubic siloxane cages. J Am Chem Soc 133:13832–13835

    Article  CAS  PubMed  Google Scholar 

  17. Zhou H et al (2014) Electrospun aggregation-induced emission active POSS-based porous copolymer films for detection of explosives. Chem Commun 50:13785–13788

    Article  CAS  Google Scholar 

  18. Zhou H et al (2015) A thermally stable and reversible microporous hydrogen-bonded organic framework: aggregation induced emission and metal ion-sensing properties. J Mater Chem C 3:11874–11880

    Article  CAS  Google Scholar 

  19. Wei Z, Luo X, Zhang L, Luo M (2014) POSS-based hybrid porous materials with exceptional hydrogen uptake at low pressure. Microporous Mesoporous Mater 193:35–39

    Article  CAS  Google Scholar 

  20. Zhang L et al (2007) Mesoporous organic–inorganic hybrid materials built using polyhedral oligomeric silsesquioxane blocks. Angew Chem 119:5091–5094

    Article  Google Scholar 

  21. Li J-G, Chu W-C, Kuo S-W (2015) Hybrid mesoporous silicas and microporous POSS-based frameworks incorporating evaporation-induced self-assembly. Nanomaterials 5:1087–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alves F, Scholder P, Nischang I (2013) Conceptual design of large surface area porous polymeric hybrid media based on polyhedral oligomeric silsesquioxane precursors: preparation, tailoring of porous properties, and internal surface functionalization. ACS Appl Mater Interfaces 5:2517–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pawlak T, Kowalewska A, Be Zgardzińska, Potrzebowski MJ (2015) Structure, dynamics, and host-guest interactions in POSS functionalized cross-linked nanoporous hybrid organic-inorganic polymers. J Phys Chem C 119:26575–26587

    Article  CAS  Google Scholar 

  24. Cassagneau T, Caruso F (2002) Oligosilsesquioxanes as versatile building blocks for the preparation of self-assembled thin films. J Am Chem Soc 124:8172–8180

    Article  CAS  PubMed  Google Scholar 

  25. Ye Q, Zhou H, Xu J (2016) Cubic polyhedral oligomeric silsesquioxane based functional materials: synthesis, assembly, and applications. Chem–An Asian J 11:1322–1337

    Article  CAS  Google Scholar 

  26. Cozza ES, Monticelli O, Marsano E (2010) Electrospinning: a novel method to incorporate POSS into a polymer matrix. Macromol Mater Eng 295:791–795

    Article  CAS  Google Scholar 

  27. Kim K-M, Keum D-K, Chujo Y (2003) Organic−inorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane. Macromolecules 36:867–875

    Article  CAS  Google Scholar 

  28. Hottle JR, Deng J, Kim H-J, Farmer-Creely CE, Viers BD, Esker AR (2005) Blends of amphiphilic poly (dimethylsiloxane) and nonamphiphilic octaisobutyl-POSS at the air/water interface. Langmuir 21:2250–2259

    Article  CAS  PubMed  Google Scholar 

  29. Baumann TF, Jones TV, Wilson T, Saab AP, Maxwell RS (2009) Synthesis and characterization of novel PDMS nanocomposites using POSS derivatives as cross-linking filler. J Polym Sci, Part A: Polym Chem 47:2589–2596

    Article  CAS  Google Scholar 

  30. Qiang X, Ma X, Li Z, Hou X (2014) Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application. Colloid Polym Sci 292:1531–1544

    Article  CAS  Google Scholar 

  31. Hong Q, Ma X, Li Z, Chen F, Zhang Q (2016) Tuning the surface hydrophobicity of honeycomb porous films fabricated by star-shaped POSS-fluorinated acrylates polymer via breath-figure-templated self-assembly. Mater Des 96:1–9

    Article  CAS  Google Scholar 

  32. Kim C-K, Kim B-S, Sheikh FA, Lee U-S, Khil M-S, Kim H-Y (2007) Amphiphilic poly (vinyl alcohol) hybrids and electrospun nanofibers incorporating polyhedral oligosilsesquioxane. Macromolecules 40:4823–4828

    Article  CAS  Google Scholar 

  33. Gupta R, Kandasubramanian B (2015) Hybrid caged nanostructure ablative composites of octaphenyl-POSS/RF as heat shields. RSC Adv 5:8757–8769

    Article  CAS  Google Scholar 

  34. Cao H, Yan D, Sun X, Xu R, Yu D (2009) Synthesis and characterization of a novel 2-oxazoline-benzoxazine compound with incorporated polyhedral oligomeric silsesquioxane. Des Monomers Polym 12:565–578

    Article  CAS  Google Scholar 

  35. Qin Y, Ren H, Zhu F, Zhang L, Shang C, Wei Z, Luo M (2011) Preparation of POSS-based organic–inorganic hybrid mesoporous materials networks through Schiff base chemistry. Eur Polym J 47:853–860

    Article  CAS  Google Scholar 

  36. Liu J, Yu H, Liang Q, Liu Y, Shen J, Bai Q (2017) Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J Colloid Interface Sci 497:402–412

    Article  CAS  PubMed  Google Scholar 

  37. Hebda E, Ozimek J, Raftopoulos KN, Michałowski S, Pielichowski J, Jancia M, Pielichowski K (2015) Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polym Adv Technol 26:932–940. https://doi.org/10.1002/pat.3504

    Article  CAS  Google Scholar 

  38. Michałowski S, Hebda E, Pielichowski K (2017) Thermal stability and flammability of polyurethane foams chemically reinforced with POSS. J Therm Anal Calorim 130:155–163. https://doi.org/10.1007/s10973-017-6391-4

    Article  CAS  Google Scholar 

  39. Normatov J, Silverstein MS (2007) Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions. Macromolecules 40:8329–8335

    Article  CAS  Google Scholar 

  40. Normatov J, Silverstein MS (2008) Interconnected silsesquioxane—organic networks in porous nanocomposites synthesized within high internal phase emulsions. Chem Mater 20:1571–1577

    Article  CAS  Google Scholar 

  41. Kataoka S et al (2015) Layered hybrid perovskites with micropores created by alkylammonium functional silsesquioxane interlayers. J Am Chem Soc 137:4158–4163

    Article  CAS  PubMed  Google Scholar 

  42. Hu M-B et al (2013) POM–organic–POSS cocluster: creating a dumbbell-shaped hybrid molecule for programming hierarchical supramolecular nanostructures. Langmuir 29:5714–5722

    Article  CAS  PubMed  Google Scholar 

  43. Banerjee S, Kataoka S, Takahashi T, Kamimura Y, Suzuki K, Sato K, Endo A (2016) Controlled formation of ordered coordination polymeric networks using silsesquioxane building blocks. Dalton Trans 45:17082–17086

    Article  CAS  PubMed  Google Scholar 

  44. Hay MT, Seurer B, Holmes D, Lee A (2010) A Novel Linear Titanium (IV)-POSS Coordination Polymer. Macromolecules 43:2108–2110

    Article  CAS  Google Scholar 

  45. Sanil E et al (2015) A polyhedral oligomeric silsesquioxane functionalized copper trimesate. Chem Commun 51:8418–8420

    Article  CAS  Google Scholar 

  46. Chen G et al (2015) Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers. Sci Rep 5:11236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kanamori K, Nakanishi K (2011) Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem Soc Rev 40:754–770

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y, Schiraldi DA (2005) Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46:11640–11647

    Article  CAS  Google Scholar 

  49. Crowley C et al (2016) Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials 83:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brigo L, Faustini M, Pistore A, Kang HK, Ferraris C, Schutzmann S, Brusatin G (2016) Porous inorganic thin films from bridged silsesquioxane sol–gel precursors. J Non-Cryst Solids 432:399–405

    Article  CAS  Google Scholar 

  51. Liu L, Hu Y, Song L, Gu X, Chen Y, Ni Z (2010) Mesoporous hybrid from anionic polyhedral oligomeric silsesquioxanes (POSS) and cationic surfactant by hydrothermal approach. Microporous Mesoporous Mater 132:567–571

    Article  CAS  Google Scholar 

  52. Devaraju S, Vengatesan M, Selvi M, Alagar M (2014) Thermal and dielectric properties of newly developed linear aliphatic-ether linked bismaleimide-polyhedral oligomeric silsesquioxane (POSS-AEBMI) nanocomposites. J Therm Anal Calorim 117:1047–1063

    Article  CAS  Google Scholar 

  53. Jothibasu S, Devaraju S, Venkatesan MR, Chandramohan A, Kumar AA, Alagar M (2012) Thermal, thermoechanical and morphological behavior of Octa (maleimido phenyl) silsesquioxane (OMPS)-cyanate ester nanocomposites. High Perform Polym 24:379–388

    Article  CAS  Google Scholar 

  54. Chandramohan A, Devaraju S, Vengatesan M, Alagar M (2012) Octakis (dimethylsiloxypropylglycidylether) silsesquioxane (OG-POSS) reinforced 1, 1-bis (3-methyl-4-hydroxymethyl) cyclohexane based polybenzoxazine nanocomposites. J Polym Res 19:9903

    Article  CAS  Google Scholar 

  55. Nagendiran S, Alagar M, Hamerton I (2010) Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: characterization of thermal, dielectric and morphological properties. Acta Mater 58:3345–3356

    Article  CAS  Google Scholar 

  56. Devaraju S, Vengatesan M, Alagar M (2011) Studies on thermal and dielectric properties of ether linked cyclohexyl diamine (ELCD)-based polyimide POSS nanocomposites (POSS-PI). High Perform Polym 23:99–111

    Article  CAS  Google Scholar 

  57. Liu H, Zheng S (2005) Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol Rapid Commun 26:196–200

    Article  CAS  Google Scholar 

  58. Chandramohan A, Alagar M (2013) Preparation and characterization of cyclohexyl moiety toughened POSS-reinforced epoxy nanocomposites. Int J Polym Anal Charact 18:73–81

    Article  CAS  Google Scholar 

  59. Chandramohan A, Dinkaran K, Kumar AA, Alagar M (2012) Synthesis and characterization of epoxy modified cyanate ester POSS nanocomposites. High Perform Polym 24:405–417

    Article  CAS  Google Scholar 

  60. Sethuraman K, Prabunathan P, Alagar M (2014) Thermo-mechanical and surface properties of POSS reinforced structurally different diamine cured epoxy nanocomposites. RSC Adv 4:45433–45441

    Article  CAS  Google Scholar 

  61. Leng Y, Zhao J, Jiang P, Wang J (2015) Amphiphilic porous polyhedral oligomeric silsesquioxanes (POSS) incorporated polyoxometalate-paired polymeric hybrids: Interfacial catalysts for epoxidation reactions. RSC Adv 5:17709–17715

    Article  CAS  Google Scholar 

  62. Scholder P, Nischang I (2015) Miniaturized catalysis: monolithic, highly porous, large surface area capillary flow reactors constructed in situ from polyhedral oligomeric silsesquioxanes (POSS). Catal Sci Technol 5:3917–3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sangtrirutnugul P et al (2017) Tunable porosity of cross-linked-polyhedral oligomeric silsesquioxane supports for palladium-catalyzed aerobic alcohol oxidation in water. ACS Appl Mater Interfaces 9:12812–12822

    Article  CAS  PubMed  Google Scholar 

  64. Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2:445–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee Y-J, Huang J-M, Kuo S-W, Lu J-S, Chang F-C (2005) Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 46:173–181

    Article  CAS  Google Scholar 

  66. Song L, He Q, Hu Y, Chen H, Liu L (2008) Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polym Degrad Stab 93:627–639

    Article  CAS  Google Scholar 

  67. Leu C-M, Reddy GM, Wei K-H, Shu C-F (2003) Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites. Chem Mater 15:2261–2265

    Article  CAS  Google Scholar 

  68. Huang J, Lim PC, Shen L, Pallathadka PK, Zeng K, He C (2005) Cubic silsesquioxane–polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Mater 53:2395–2404

    Article  CAS  Google Scholar 

  69. Leu C-M, Chang Y-T, Wei K-H (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15:3721–3727

    Article  CAS  Google Scholar 

  70. Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696

    Article  CAS  Google Scholar 

  71. Chen Y, Chen L, Nie H, Kang E (2006) Low-κ nanocomposite films based on polyimides with grafted polyhedral oligomeric silsesquioxane. J Appl Polym Sci 99:2226–2232

    Article  CAS  Google Scholar 

  72. Joshi M, Butola BS (2004) Polymeric nanocomposites—Polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J Macromol Sci Part C: Polym Rev 44:389–410

    Article  CAS  Google Scholar 

  73. Zhao J, Fu Y, Liu S (2008) Polyhedral oligomeric silsesquioxane (POSS)-modified thermoplastic and thermosetting nanocomposites: a review. Polym Polym Compos 16:483

    CAS  Google Scholar 

  74. Wang YZ, Chen WY, Yang CC, Lin CL, Chang FC (2007) Novel epoxy nanocomposite of low Dk introduced fluorine-containing POSS structure. J Polym Sci, Part B: Polym Phys 45:502–510

    Article  CAS  Google Scholar 

  75. Zhang C, Xu HY, Zhao X (2010) Structure and properties of low-dielectric-constant poly (acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposite. Chin Chem Lett 21:488–491

    Article  CAS  Google Scholar 

  76. Seino M, Wang W, Lofgreen JE, Puzzo DP, Manabe T, Ozin GA (2011) Low-k periodic mesoporous organosilica with air walls: POSS-PMO. J Am Chem Soc 133:18082–18085

    Article  CAS  PubMed  Google Scholar 

  77. Joseph AM, Nagendra B, Surendran K, Bhoje Gowd E (2015) Syndiotactic polystyrene/hybrid silica spheres of POSS siloxane composites exhibiting ultralow dielectric constant. ACS Appl Mater Interfaces 7:19474–19483

    Article  CAS  PubMed  Google Scholar 

  78. Tseng M-C, Liu Y-L (2010) Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 51:5567–5575

    Article  CAS  Google Scholar 

  79. Selvi M, Devaraju S, Vengatesan M, Go J, Kumar M, Alagar M (2014) The effect of UV radiation on polybenzoxazine/epoxy/OG-POSS nanocomposites. RSC Adv 4:8238–8244

    Article  CAS  Google Scholar 

  80. Alagar M (2015) Dielectric and thermal behaviors of POSS reinforced polyurethane based polybenzoxazine nanocomposites. RSC Adv 5:33008–33015

    Article  CAS  Google Scholar 

  81. Vengatesan M, Devaraju S, Dinakaran K, Alagar M (2011) Studies on thermal and dielectric properties of organo clay and octakis (dimethylsiloxypropylglycidylether) silsesquioxane filled polybenzoxazine hybrid nanocomposites. Polym Compos 32:1701–1711

    Article  CAS  Google Scholar 

  82. Ariraman M, Sasikumar R, Alagar M (2016) Cyanate ester tethered POSS/BACY nanocomposites for low-k dielectrics. Polym Adv Technol 27:597–605

    Article  CAS  Google Scholar 

  83. Alagar M, Devaraju S, Prabunathan P, Selvi M (2013) Low dielectric and low surface free energy flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester based POSS nanocomposites. Front Chem 1:19

    PubMed  PubMed Central  Google Scholar 

  84. Dvornic PR, Hartmann-Thompson C, Keinath SE, Hill EJ (2004) Organic−inorganic polyamidoamine (PAMAM) dendrimer−polyhedral oligosilsesquioxane (POSS) nanohybrids. Macromolecules 37:7818–7831

    Article  CAS  Google Scholar 

  85. Lee Y-J, Huang J-M, Kuo S-W, Chang F-C (2005) Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles. Polymer 46:10056–10065

    Article  CAS  Google Scholar 

  86. Schwab JJ, Lichtenhan JD (1998) Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organometal Chem 12:707–713

    Article  CAS  Google Scholar 

  87. Gong D, Long J, Jiang D, Fan P, Zhang H, Li L, Zhong M (2016) Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template. ACS Appl Mater Interfaces 8:17511–17518

    Article  CAS  PubMed  Google Scholar 

  88. Bassindale AR, Codina-Barrios A, Frascione N, Taylor PG (2008) The use of silsesquioxane cages and phage display technology to probe silicone–protein interactions. New J Chem 32:240–246

    Article  CAS  Google Scholar 

  89. Qiu LG, Xie AJ, Zhang LD (2005) Encapsulation of catalysts in supramolecular porous frameworks: size-and shape-selective catalytic oxidation of phenols. Adv Mater 17:689–692

    Article  CAS  Google Scholar 

  90. Bordiga S et al. (2004) Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chem Commun 2300–2301

    Google Scholar 

  91. Collins DJ, Zhou H-C (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17:3154–3160

    Article  CAS  Google Scholar 

  92. Sun D et al (2003) Novel silver-containing supramolecular frameworks constructed by combination of coordination bonds and supramolecular interactions. Inorg Chem 42:7512–7518

    Article  CAS  PubMed  Google Scholar 

  93. Ahmad N, Noh AM, Leo C, Ahmad A (2017) CO2 removal using membrane gas absorption with PVDF membrane incorporated with POSS and SAPO-34 zeolite. Chem Eng Res Des 118:238–247

    Article  CAS  Google Scholar 

  94. Wu M, Ra Wu, Li R, Qin H, Dong J, Zhang Z, Zou H (2010) Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic−organic hybrid monolithic columns. Anal Chem 82:5447–5454

    Article  CAS  PubMed  Google Scholar 

  95. Alves F, Nischang I (2013) Tailor-made hybrid organic-inorganic porous materials based on polyhedral oligomeric silsesquioxanes (POSS) by the step-growth mechanism of thiol-ene “click” chemistry. Chem-A Eur J 19:17310–17313

    Article  CAS  Google Scholar 

  96. Lin H, Ou J, Zhang Z, Dong J, Zou H (2013) Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem Commun 49:231–233

    Article  CAS  Google Scholar 

  97. Lin H, Ou J, Liu Z, Wang H, Dong J, Zou H (2015) Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography. J Chromatogr A 1379:34–42

    Article  CAS  PubMed  Google Scholar 

  98. Alves F, Nischang I (2015) Radical-mediated step-growth: preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics. J Chromatogr A 1412:112–125

    Article  CAS  PubMed  Google Scholar 

  99. Zhang H, Ou J, Liu Z, Wang H, Wei Y, Zou H (2015) Preparation of hybrid monolithic columns via “one-pot” photoinitiated thiol-acrylate polymerization for retention-independent performance in capillary liquid chromatography. Anal Chem 87:8789–8797. https://doi.org/10.1021/acs.analchem.5b01707

    Article  CAS  PubMed  Google Scholar 

  100. Lin H, Ou J, Tang S, Zhang Z, Dong J, Liu Z, Zou H (2013) Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography. J Chromatogr A 1301:131–138

    Article  CAS  PubMed  Google Scholar 

  101. Zhao J, Farhatnia Y, Kalaskar DM, Zhang Y, Bulter PE, Seifalian AM (2015) The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane. Int J Biochem cell Biol 68:176–186

    Article  CAS  PubMed  Google Scholar 

  102. Teng CP, Mya KY, Win KY, Yeo CC, Low M, He C, Han M-Y (2014) Star-shaped polyhedral oligomeric silsesquioxane-polycaprolactone-polyurethane as biomaterials for tissue engineering application. NPG Asia Mater 6:e142

    Article  Google Scholar 

  103. Janeta M, Rajczakowska M, Ejfler J, Łydżba D, Szafert S (2016) Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl) propyl methacrylate–POSS hybrid towards potential tissue engineering applications. RSC Adv 6:66037–66047

    Article  CAS  Google Scholar 

  104. He H-B et al. (2014) Fabrication of enrofloxacin imprinted organic–inorganic hybrid mesoporous sorbent from nanomagnetic polyhedral oligomeric silsesquioxanes for the selective extraction of fluoroquinolones in milk samples. J Chromatogr A 1361:23–33

    Article  CAS  PubMed  Google Scholar 

  105. Wang D, Yang W, Li L, Zhao X, Feng S, Liu H (2013) Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction: porosity, gas sorption, and luminescence. J Mater Chem A 1:13549–13558

    Article  CAS  Google Scholar 

  106. Wang D, Yang W, Feng S, Liu H (2014) Constructing hybrid porous polymers from cubic octavinylsilsequioxane and planar halogenated benzene. Polym Chem 5:3634–3642

    Article  CAS  Google Scholar 

  107. Petit C, Lin K-YA, Park A-HA (2013) Design and characterization of liquidlike POSS-based hybrid nanomaterials synthesized via ionic bonding and their interactions with CO2. Langmuir 29:12234–12242

    Article  CAS  PubMed  Google Scholar 

  108. Wang D, Li L, Yang W, Zuo Y, Feng S, Liu H (2014) POSS-based luminescent porous polymers for carbon dioxide sorption and nitroaromatic explosives detection. RSC Adv 4:59877–59884

    Article  CAS  Google Scholar 

  109. Wang D, Yang W, Feng S, Liu H (2016) Amine post-functionalized POSS-based porous polymers exhibiting simultaneously enhanced porosity and carbon dioxide adsorption properties. RSC Adv 6:13749–13756

    Article  CAS  Google Scholar 

  110. Wang S, Tan L, Zhang C, Hussain I, Tan B (2015) Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies. J Mater Chem A 3:6542–6548

    Article  CAS  Google Scholar 

  111. Tang H et al (2016) Octa (aminophenyl) silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: synthesis and application for supercapacitors. Electrochim Acta 194:143–150

    Article  CAS  Google Scholar 

  112. Liu D et al (2016) Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors. Nano Energy 22:255–268

    Article  CAS  Google Scholar 

  113. Dasgupta B, Sen SK, Banerjee S (2010) Aminoethylaminopropylisobutyl POSS—Polyimide nanocomposite membranes and their gas transport properties. Mater Sci Eng: B 168:30–35

    Article  CAS  Google Scholar 

  114. Kanezashi M, Shioda T, Gunji T, Tsuru T (2012) Gas permeation properties of silica membranes with uniform pore sizes derived from polyhedral oligomeric silsesquioxane. AIChE J 58:1733–1743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Mathivathanan Ariraman, Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasikumar Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramachandran, S., Muthukaruppan, A. (2018). Porous Hybrid Materials with POSS. In: Kalia, S., Pielichowski, K. (eds) Polymer/POSS Nanocomposites and Hybrid Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-02327-0_8

Download citation

Publish with us

Policies and ethics