Advertisement

Porous Hybrid Materials with POSS

  • Sasikumar RamachandranEmail author
  • Alagar Muthukaruppan
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Massive applications and advantages of porous hybrid materials based on polyhedral oligomeric silsesquioxane (POSS) have generated enormous research interest in the development of porous POSS hybrid materials in both the industries and the academics. POSS, a well-known nanoporous inorganic building block materials with the formula (RSiO1.5)n, (n ≥ 6) including definite cage-shaped three-dimensional structures is surrounded by organic functional groups, which were utilized to produce porous hybrid materials with organic molecules via copolymerization, grafting, and blending and also with metals by coordination. This chapter reviews the properties and importance of porosity of POSS and POSS hybrid materials.

Keywords

POSS Porosity Polymer Hybrid material Low-k dielectric Catalyst 

Notes

Acknowledgements

The authors thank Dr. Mathivathanan Ariraman, Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan for his support.

References

  1. 1.
    Kickelbick G (2014) Hybrid materials–past, present and future. Hybrid Mater 1Google Scholar
  2. 2.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. In: supramolecular polymers polymeric betains oligomers. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 225–296.  https://doi.org/10.1007/12_077CrossRefGoogle Scholar
  3. 3.
    Seçkin T, Köytepe S, Adıgüzel Hİ (2008) Molecular design of POSS core star polyimides as a route to low-κ dielectric materials. Mater Chem Phys 112:1040–1046CrossRefGoogle Scholar
  4. 4.
    Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) Highly porous polyhedral silsesquioxane polymers. Synth charact J Am Chem Soc 120:8380–8391CrossRefGoogle Scholar
  5. 5.
    Bassindale AR, Gentle TE (1993) Siloxane and hydrocarbon octopus molecules with silsesquioxane cores. J Mater Chem 3:1319–1325CrossRefGoogle Scholar
  6. 6.
    Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes:[(c-C5H9) 7Si7O9 (OH) 3],[(c-C7H13) 7Si7O9 (OH) 3], and [(c-C7H13) 6Si6O7 (OH) 4]. Organometallics 10:2526–2528CrossRefGoogle Scholar
  7. 7.
    Ro HW, Soles CL (2011) Silsesquioxanes in nanoscale patterning applications. Mater Today 14:20–33CrossRefGoogle Scholar
  8. 8.
    Zhou H, Ye Q, Xu J (2017) Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater Chem Front 1:212–230CrossRefGoogle Scholar
  9. 9.
    Hurd CB (1946) Studies on siloxanes. I. the specific volume and viscosity in relation to temperature and constitution. J Am Chem Soc 68:364–370CrossRefGoogle Scholar
  10. 10.
    Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applicationsCrossRefGoogle Scholar
  11. 11.
    Wang F, Lu X, He C (2011) Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. J Mater Chem 21:2775–2782CrossRefGoogle Scholar
  12. 12.
    Zhang W, Müller AH (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38:1121–1162CrossRefGoogle Scholar
  13. 13.
    Lee J, Cho H-J, Jung B-J, Cho NS, Shim H-K (2004) Stabilized blue luminescent polyfluorenes: introducing polyhedral oligomeric silsesquioxane. Macromolecules 37:8523–8529CrossRefGoogle Scholar
  14. 14.
    Zhang K, Zhuang Q, Liu X, Yang G, Cai R, Han Z (2013) A new benzoxazine containing benzoxazole-functionalized polyhedral oligomeric silsesquioxane and the corresponding polybenzoxazine nanocomposites. Macromolecules 46:2696–2704CrossRefGoogle Scholar
  15. 15.
    Ariraman M, Alagar M (2014) Design of lamellar structured POSS/BPZ polybenzoxazine nanocomposites as a novel class of ultra low-k dielectric materials. Rsc Adv 4:19127–19136CrossRefGoogle Scholar
  16. 16.
    Chaikittisilp W, Kubo M, Moteki T, Sugawara-Narutaki A, Shimojima A, Okubo T (2011) Porous siloxane–organic hybrid with ultrahigh surface area through simultaneous polymerization–destruction of functionalized cubic siloxane cages. J Am Chem Soc 133:13832–13835PubMedCrossRefGoogle Scholar
  17. 17.
    Zhou H et al (2014) Electrospun aggregation-induced emission active POSS-based porous copolymer films for detection of explosives. Chem Commun 50:13785–13788CrossRefGoogle Scholar
  18. 18.
    Zhou H et al (2015) A thermally stable and reversible microporous hydrogen-bonded organic framework: aggregation induced emission and metal ion-sensing properties. J Mater Chem C 3:11874–11880CrossRefGoogle Scholar
  19. 19.
    Wei Z, Luo X, Zhang L, Luo M (2014) POSS-based hybrid porous materials with exceptional hydrogen uptake at low pressure. Microporous Mesoporous Mater 193:35–39CrossRefGoogle Scholar
  20. 20.
    Zhang L et al (2007) Mesoporous organic–inorganic hybrid materials built using polyhedral oligomeric silsesquioxane blocks. Angew Chem 119:5091–5094CrossRefGoogle Scholar
  21. 21.
    Li J-G, Chu W-C, Kuo S-W (2015) Hybrid mesoporous silicas and microporous POSS-based frameworks incorporating evaporation-induced self-assembly. Nanomaterials 5:1087–1101PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Alves F, Scholder P, Nischang I (2013) Conceptual design of large surface area porous polymeric hybrid media based on polyhedral oligomeric silsesquioxane precursors: preparation, tailoring of porous properties, and internal surface functionalization. ACS Appl Mater Interfaces 5:2517–2526PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pawlak T, Kowalewska A, Be Zgardzińska, Potrzebowski MJ (2015) Structure, dynamics, and host-guest interactions in POSS functionalized cross-linked nanoporous hybrid organic-inorganic polymers. J Phys Chem C 119:26575–26587CrossRefGoogle Scholar
  24. 24.
    Cassagneau T, Caruso F (2002) Oligosilsesquioxanes as versatile building blocks for the preparation of self-assembled thin films. J Am Chem Soc 124:8172–8180PubMedCrossRefGoogle Scholar
  25. 25.
    Ye Q, Zhou H, Xu J (2016) Cubic polyhedral oligomeric silsesquioxane based functional materials: synthesis, assembly, and applications. Chem–An Asian J 11:1322–1337CrossRefGoogle Scholar
  26. 26.
    Cozza ES, Monticelli O, Marsano E (2010) Electrospinning: a novel method to incorporate POSS into a polymer matrix. Macromol Mater Eng 295:791–795CrossRefGoogle Scholar
  27. 27.
    Kim K-M, Keum D-K, Chujo Y (2003) Organic−inorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane. Macromolecules 36:867–875CrossRefGoogle Scholar
  28. 28.
    Hottle JR, Deng J, Kim H-J, Farmer-Creely CE, Viers BD, Esker AR (2005) Blends of amphiphilic poly (dimethylsiloxane) and nonamphiphilic octaisobutyl-POSS at the air/water interface. Langmuir 21:2250–2259PubMedCrossRefGoogle Scholar
  29. 29.
    Baumann TF, Jones TV, Wilson T, Saab AP, Maxwell RS (2009) Synthesis and characterization of novel PDMS nanocomposites using POSS derivatives as cross-linking filler. J Polym Sci, Part A: Polym Chem 47:2589–2596CrossRefGoogle Scholar
  30. 30.
    Qiang X, Ma X, Li Z, Hou X (2014) Synthesis of star-shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates for hydrophobic honeycomb porous film application. Colloid Polym Sci 292:1531–1544CrossRefGoogle Scholar
  31. 31.
    Hong Q, Ma X, Li Z, Chen F, Zhang Q (2016) Tuning the surface hydrophobicity of honeycomb porous films fabricated by star-shaped POSS-fluorinated acrylates polymer via breath-figure-templated self-assembly. Mater Des 96:1–9CrossRefGoogle Scholar
  32. 32.
    Kim C-K, Kim B-S, Sheikh FA, Lee U-S, Khil M-S, Kim H-Y (2007) Amphiphilic poly (vinyl alcohol) hybrids and electrospun nanofibers incorporating polyhedral oligosilsesquioxane. Macromolecules 40:4823–4828CrossRefGoogle Scholar
  33. 33.
    Gupta R, Kandasubramanian B (2015) Hybrid caged nanostructure ablative composites of octaphenyl-POSS/RF as heat shields. RSC Adv 5:8757–8769CrossRefGoogle Scholar
  34. 34.
    Cao H, Yan D, Sun X, Xu R, Yu D (2009) Synthesis and characterization of a novel 2-oxazoline-benzoxazine compound with incorporated polyhedral oligomeric silsesquioxane. Des Monomers Polym 12:565–578CrossRefGoogle Scholar
  35. 35.
    Qin Y, Ren H, Zhu F, Zhang L, Shang C, Wei Z, Luo M (2011) Preparation of POSS-based organic–inorganic hybrid mesoporous materials networks through Schiff base chemistry. Eur Polym J 47:853–860CrossRefGoogle Scholar
  36. 36.
    Liu J, Yu H, Liang Q, Liu Y, Shen J, Bai Q (2017) Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J Colloid Interface Sci 497:402–412PubMedCrossRefGoogle Scholar
  37. 37.
    Hebda E, Ozimek J, Raftopoulos KN, Michałowski S, Pielichowski J, Jancia M, Pielichowski K (2015) Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polym Adv Technol 26:932–940.  https://doi.org/10.1002/pat.3504CrossRefGoogle Scholar
  38. 38.
    Michałowski S, Hebda E, Pielichowski K (2017) Thermal stability and flammability of polyurethane foams chemically reinforced with POSS. J Therm Anal Calorim 130:155–163.  https://doi.org/10.1007/s10973-017-6391-4CrossRefGoogle Scholar
  39. 39.
    Normatov J, Silverstein MS (2007) Silsesquioxane-cross-linked porous nanocomposites synthesized within high internal phase emulsions. Macromolecules 40:8329–8335CrossRefGoogle Scholar
  40. 40.
    Normatov J, Silverstein MS (2008) Interconnected silsesquioxane—organic networks in porous nanocomposites synthesized within high internal phase emulsions. Chem Mater 20:1571–1577CrossRefGoogle Scholar
  41. 41.
    Kataoka S et al (2015) Layered hybrid perovskites with micropores created by alkylammonium functional silsesquioxane interlayers. J Am Chem Soc 137:4158–4163PubMedCrossRefGoogle Scholar
  42. 42.
    Hu M-B et al (2013) POM–organic–POSS cocluster: creating a dumbbell-shaped hybrid molecule for programming hierarchical supramolecular nanostructures. Langmuir 29:5714–5722PubMedCrossRefGoogle Scholar
  43. 43.
    Banerjee S, Kataoka S, Takahashi T, Kamimura Y, Suzuki K, Sato K, Endo A (2016) Controlled formation of ordered coordination polymeric networks using silsesquioxane building blocks. Dalton Trans 45:17082–17086PubMedCrossRefGoogle Scholar
  44. 44.
    Hay MT, Seurer B, Holmes D, Lee A (2010) A Novel Linear Titanium (IV)-POSS Coordination Polymer. Macromolecules 43:2108–2110CrossRefGoogle Scholar
  45. 45.
    Sanil E et al (2015) A polyhedral oligomeric silsesquioxane functionalized copper trimesate. Chem Commun 51:8418–8420CrossRefGoogle Scholar
  46. 46.
    Chen G et al (2015) Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers. Sci Rep 5:11236PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kanamori K, Nakanishi K (2011) Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem Soc Rev 40:754–770PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao Y, Schiraldi DA (2005) Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46:11640–11647CrossRefGoogle Scholar
  49. 49.
    Crowley C et al (2016) Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials 83:283–293PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Brigo L, Faustini M, Pistore A, Kang HK, Ferraris C, Schutzmann S, Brusatin G (2016) Porous inorganic thin films from bridged silsesquioxane sol–gel precursors. J Non-Cryst Solids 432:399–405CrossRefGoogle Scholar
  51. 51.
    Liu L, Hu Y, Song L, Gu X, Chen Y, Ni Z (2010) Mesoporous hybrid from anionic polyhedral oligomeric silsesquioxanes (POSS) and cationic surfactant by hydrothermal approach. Microporous Mesoporous Mater 132:567–571CrossRefGoogle Scholar
  52. 52.
    Devaraju S, Vengatesan M, Selvi M, Alagar M (2014) Thermal and dielectric properties of newly developed linear aliphatic-ether linked bismaleimide-polyhedral oligomeric silsesquioxane (POSS-AEBMI) nanocomposites. J Therm Anal Calorim 117:1047–1063CrossRefGoogle Scholar
  53. 53.
    Jothibasu S, Devaraju S, Venkatesan MR, Chandramohan A, Kumar AA, Alagar M (2012) Thermal, thermoechanical and morphological behavior of Octa (maleimido phenyl) silsesquioxane (OMPS)-cyanate ester nanocomposites. High Perform Polym 24:379–388CrossRefGoogle Scholar
  54. 54.
    Chandramohan A, Devaraju S, Vengatesan M, Alagar M (2012) Octakis (dimethylsiloxypropylglycidylether) silsesquioxane (OG-POSS) reinforced 1, 1-bis (3-methyl-4-hydroxymethyl) cyclohexane based polybenzoxazine nanocomposites. J Polym Res 19:9903CrossRefGoogle Scholar
  55. 55.
    Nagendiran S, Alagar M, Hamerton I (2010) Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: characterization of thermal, dielectric and morphological properties. Acta Mater 58:3345–3356CrossRefGoogle Scholar
  56. 56.
    Devaraju S, Vengatesan M, Alagar M (2011) Studies on thermal and dielectric properties of ether linked cyclohexyl diamine (ELCD)-based polyimide POSS nanocomposites (POSS-PI). High Perform Polym 23:99–111CrossRefGoogle Scholar
  57. 57.
    Liu H, Zheng S (2005) Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol Rapid Commun 26:196–200CrossRefGoogle Scholar
  58. 58.
    Chandramohan A, Alagar M (2013) Preparation and characterization of cyclohexyl moiety toughened POSS-reinforced epoxy nanocomposites. Int J Polym Anal Charact 18:73–81CrossRefGoogle Scholar
  59. 59.
    Chandramohan A, Dinkaran K, Kumar AA, Alagar M (2012) Synthesis and characterization of epoxy modified cyanate ester POSS nanocomposites. High Perform Polym 24:405–417CrossRefGoogle Scholar
  60. 60.
    Sethuraman K, Prabunathan P, Alagar M (2014) Thermo-mechanical and surface properties of POSS reinforced structurally different diamine cured epoxy nanocomposites. RSC Adv 4:45433–45441CrossRefGoogle Scholar
  61. 61.
    Leng Y, Zhao J, Jiang P, Wang J (2015) Amphiphilic porous polyhedral oligomeric silsesquioxanes (POSS) incorporated polyoxometalate-paired polymeric hybrids: Interfacial catalysts for epoxidation reactions. RSC Adv 5:17709–17715CrossRefGoogle Scholar
  62. 62.
    Scholder P, Nischang I (2015) Miniaturized catalysis: monolithic, highly porous, large surface area capillary flow reactors constructed in situ from polyhedral oligomeric silsesquioxanes (POSS). Catal Sci Technol 5:3917–3921PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sangtrirutnugul P et al (2017) Tunable porosity of cross-linked-polyhedral oligomeric silsesquioxane supports for palladium-catalyzed aerobic alcohol oxidation in water. ACS Appl Mater Interfaces 9:12812–12822PubMedCrossRefGoogle Scholar
  64. 64.
    Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2:445–475PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lee Y-J, Huang J-M, Kuo S-W, Lu J-S, Chang F-C (2005) Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 46:173–181CrossRefGoogle Scholar
  66. 66.
    Song L, He Q, Hu Y, Chen H, Liu L (2008) Study on thermal degradation and combustion behaviors of PC/POSS hybrids. Polym Degrad Stab 93:627–639CrossRefGoogle Scholar
  67. 67.
    Leu C-M, Reddy GM, Wei K-H, Shu C-F (2003) Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites. Chem Mater 15:2261–2265CrossRefGoogle Scholar
  68. 68.
    Huang J, Lim PC, Shen L, Pallathadka PK, Zeng K, He C (2005) Cubic silsesquioxane–polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Mater 53:2395–2404CrossRefGoogle Scholar
  69. 69.
    Leu C-M, Chang Y-T, Wei K-H (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15:3721–3727CrossRefGoogle Scholar
  70. 70.
    Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696CrossRefGoogle Scholar
  71. 71.
    Chen Y, Chen L, Nie H, Kang E (2006) Low-κ nanocomposite films based on polyimides with grafted polyhedral oligomeric silsesquioxane. J Appl Polym Sci 99:2226–2232CrossRefGoogle Scholar
  72. 72.
    Joshi M, Butola BS (2004) Polymeric nanocomposites—Polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J Macromol Sci Part C: Polym Rev 44:389–410CrossRefGoogle Scholar
  73. 73.
    Zhao J, Fu Y, Liu S (2008) Polyhedral oligomeric silsesquioxane (POSS)-modified thermoplastic and thermosetting nanocomposites: a review. Polym Polym Compos 16:483Google Scholar
  74. 74.
    Wang YZ, Chen WY, Yang CC, Lin CL, Chang FC (2007) Novel epoxy nanocomposite of low Dk introduced fluorine-containing POSS structure. J Polym Sci, Part B: Polym Phys 45:502–510CrossRefGoogle Scholar
  75. 75.
    Zhang C, Xu HY, Zhao X (2010) Structure and properties of low-dielectric-constant poly (acetoxystyrene-co-octavinyl-polyhedral oligomeric silsesquioxane) hybrid nanocomposite. Chin Chem Lett 21:488–491CrossRefGoogle Scholar
  76. 76.
    Seino M, Wang W, Lofgreen JE, Puzzo DP, Manabe T, Ozin GA (2011) Low-k periodic mesoporous organosilica with air walls: POSS-PMO. J Am Chem Soc 133:18082–18085PubMedCrossRefGoogle Scholar
  77. 77.
    Joseph AM, Nagendra B, Surendran K, Bhoje Gowd E (2015) Syndiotactic polystyrene/hybrid silica spheres of POSS siloxane composites exhibiting ultralow dielectric constant. ACS Appl Mater Interfaces 7:19474–19483PubMedCrossRefGoogle Scholar
  78. 78.
    Tseng M-C, Liu Y-L (2010) Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 51:5567–5575CrossRefGoogle Scholar
  79. 79.
    Selvi M, Devaraju S, Vengatesan M, Go J, Kumar M, Alagar M (2014) The effect of UV radiation on polybenzoxazine/epoxy/OG-POSS nanocomposites. RSC Adv 4:8238–8244CrossRefGoogle Scholar
  80. 80.
    Alagar M (2015) Dielectric and thermal behaviors of POSS reinforced polyurethane based polybenzoxazine nanocomposites. RSC Adv 5:33008–33015CrossRefGoogle Scholar
  81. 81.
    Vengatesan M, Devaraju S, Dinakaran K, Alagar M (2011) Studies on thermal and dielectric properties of organo clay and octakis (dimethylsiloxypropylglycidylether) silsesquioxane filled polybenzoxazine hybrid nanocomposites. Polym Compos 32:1701–1711CrossRefGoogle Scholar
  82. 82.
    Ariraman M, Sasikumar R, Alagar M (2016) Cyanate ester tethered POSS/BACY nanocomposites for low-k dielectrics. Polym Adv Technol 27:597–605CrossRefGoogle Scholar
  83. 83.
    Alagar M, Devaraju S, Prabunathan P, Selvi M (2013) Low dielectric and low surface free energy flexible linear aliphatic alkoxy core bridged bisphenol cyanate ester based POSS nanocomposites. Front Chem 1:19PubMedPubMedCentralGoogle Scholar
  84. 84.
    Dvornic PR, Hartmann-Thompson C, Keinath SE, Hill EJ (2004) Organic−inorganic polyamidoamine (PAMAM) dendrimer−polyhedral oligosilsesquioxane (POSS) nanohybrids. Macromolecules 37:7818–7831CrossRefGoogle Scholar
  85. 85.
    Lee Y-J, Huang J-M, Kuo S-W, Chang F-C (2005) Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles. Polymer 46:10056–10065CrossRefGoogle Scholar
  86. 86.
    Schwab JJ, Lichtenhan JD (1998) Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organometal Chem 12:707–713CrossRefGoogle Scholar
  87. 87.
    Gong D, Long J, Jiang D, Fan P, Zhang H, Li L, Zhong M (2016) Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser-ablated template. ACS Appl Mater Interfaces 8:17511–17518PubMedCrossRefGoogle Scholar
  88. 88.
    Bassindale AR, Codina-Barrios A, Frascione N, Taylor PG (2008) The use of silsesquioxane cages and phage display technology to probe silicone–protein interactions. New J Chem 32:240–246CrossRefGoogle Scholar
  89. 89.
    Qiu LG, Xie AJ, Zhang LD (2005) Encapsulation of catalysts in supramolecular porous frameworks: size-and shape-selective catalytic oxidation of phenols. Adv Mater 17:689–692CrossRefGoogle Scholar
  90. 90.
    Bordiga S et al. (2004) Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chem Commun 2300–2301Google Scholar
  91. 91.
    Collins DJ, Zhou H-C (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17:3154–3160CrossRefGoogle Scholar
  92. 92.
    Sun D et al (2003) Novel silver-containing supramolecular frameworks constructed by combination of coordination bonds and supramolecular interactions. Inorg Chem 42:7512–7518PubMedCrossRefGoogle Scholar
  93. 93.
    Ahmad N, Noh AM, Leo C, Ahmad A (2017) CO2 removal using membrane gas absorption with PVDF membrane incorporated with POSS and SAPO-34 zeolite. Chem Eng Res Des 118:238–247CrossRefGoogle Scholar
  94. 94.
    Wu M, Ra Wu, Li R, Qin H, Dong J, Zhang Z, Zou H (2010) Polyhedral oligomeric silsesquioxane as a cross-linker for preparation of inorganic−organic hybrid monolithic columns. Anal Chem 82:5447–5454PubMedCrossRefGoogle Scholar
  95. 95.
    Alves F, Nischang I (2013) Tailor-made hybrid organic-inorganic porous materials based on polyhedral oligomeric silsesquioxanes (POSS) by the step-growth mechanism of thiol-ene “click” chemistry. Chem-A Eur J 19:17310–17313CrossRefGoogle Scholar
  96. 96.
    Lin H, Ou J, Zhang Z, Dong J, Zou H (2013) Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem Commun 49:231–233CrossRefGoogle Scholar
  97. 97.
    Lin H, Ou J, Liu Z, Wang H, Dong J, Zou H (2015) Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography. J Chromatogr A 1379:34–42PubMedCrossRefGoogle Scholar
  98. 98.
    Alves F, Nischang I (2015) Radical-mediated step-growth: preparation of hybrid polymer monolithic columns with fine control of nanostructural and chromatographic characteristics. J Chromatogr A 1412:112–125PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang H, Ou J, Liu Z, Wang H, Wei Y, Zou H (2015) Preparation of hybrid monolithic columns via “one-pot” photoinitiated thiol-acrylate polymerization for retention-independent performance in capillary liquid chromatography. Anal Chem 87:8789–8797.  https://doi.org/10.1021/acs.analchem.5b01707CrossRefPubMedGoogle Scholar
  100. 100.
    Lin H, Ou J, Tang S, Zhang Z, Dong J, Liu Z, Zou H (2013) Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography. J Chromatogr A 1301:131–138PubMedCrossRefGoogle Scholar
  101. 101.
    Zhao J, Farhatnia Y, Kalaskar DM, Zhang Y, Bulter PE, Seifalian AM (2015) The influence of porosity on the hemocompatibility of polyhedral oligomeric silsesquioxane poly (caprolactone-urea) urethane. Int J Biochem cell Biol 68:176–186PubMedCrossRefGoogle Scholar
  102. 102.
    Teng CP, Mya KY, Win KY, Yeo CC, Low M, He C, Han M-Y (2014) Star-shaped polyhedral oligomeric silsesquioxane-polycaprolactone-polyurethane as biomaterials for tissue engineering application. NPG Asia Mater 6:e142CrossRefGoogle Scholar
  103. 103.
    Janeta M, Rajczakowska M, Ejfler J, Łydżba D, Szafert S (2016) Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl) propyl methacrylate–POSS hybrid towards potential tissue engineering applications. RSC Adv 6:66037–66047CrossRefGoogle Scholar
  104. 104.
    He H-B et al. (2014) Fabrication of enrofloxacin imprinted organic–inorganic hybrid mesoporous sorbent from nanomagnetic polyhedral oligomeric silsesquioxanes for the selective extraction of fluoroquinolones in milk samples. J Chromatogr A 1361:23–33PubMedCrossRefGoogle Scholar
  105. 105.
    Wang D, Yang W, Li L, Zhao X, Feng S, Liu H (2013) Hybrid networks constructed from tetrahedral silicon-centered precursors and cubic POSS-based building blocks via Heck reaction: porosity, gas sorption, and luminescence. J Mater Chem A 1:13549–13558CrossRefGoogle Scholar
  106. 106.
    Wang D, Yang W, Feng S, Liu H (2014) Constructing hybrid porous polymers from cubic octavinylsilsequioxane and planar halogenated benzene. Polym Chem 5:3634–3642CrossRefGoogle Scholar
  107. 107.
    Petit C, Lin K-YA, Park A-HA (2013) Design and characterization of liquidlike POSS-based hybrid nanomaterials synthesized via ionic bonding and their interactions with CO2. Langmuir 29:12234–12242PubMedCrossRefGoogle Scholar
  108. 108.
    Wang D, Li L, Yang W, Zuo Y, Feng S, Liu H (2014) POSS-based luminescent porous polymers for carbon dioxide sorption and nitroaromatic explosives detection. RSC Adv 4:59877–59884CrossRefGoogle Scholar
  109. 109.
    Wang D, Yang W, Feng S, Liu H (2016) Amine post-functionalized POSS-based porous polymers exhibiting simultaneously enhanced porosity and carbon dioxide adsorption properties. RSC Adv 6:13749–13756CrossRefGoogle Scholar
  110. 110.
    Wang S, Tan L, Zhang C, Hussain I, Tan B (2015) Novel POSS-based organic–inorganic hybrid porous materials by low cost strategies. J Mater Chem A 3:6542–6548CrossRefGoogle Scholar
  111. 111.
    Tang H et al (2016) Octa (aminophenyl) silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: synthesis and application for supercapacitors. Electrochim Acta 194:143–150CrossRefGoogle Scholar
  112. 112.
    Liu D et al (2016) Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors. Nano Energy 22:255–268CrossRefGoogle Scholar
  113. 113.
    Dasgupta B, Sen SK, Banerjee S (2010) Aminoethylaminopropylisobutyl POSS—Polyimide nanocomposite membranes and their gas transport properties. Mater Sci Eng: B 168:30–35CrossRefGoogle Scholar
  114. 114.
    Kanezashi M, Shioda T, Gunji T, Tsuru T (2012) Gas permeation properties of silica membranes with uniform pore sizes derived from polyhedral oligomeric silsesquioxane. AIChE J 58:1733–1743CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.PICM, Ecole PolytechniquePalaiseauFrance
  2. 2.Centre of Excellence in Advanced Materials, Manufacturing, Processing and Characterization (COExAMMPC), Vignan’s UniversityVadlamudi, GunturIndia

Personalised recommendations