Advertisement

Dielectric Properties of Epoxy/POSS and PE/POSS Systems

  • Eric DavidEmail author
  • Thomas Andritsch
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

In many applications in electronic power, and high-voltage engineering, there is a need to improve the electrical properties of existing insulation systems and/or to develop novel insulation materials with properties more suitable with the changing requirements, particularly in the electrotechnical area. During the last few decades, a considerable attention has been given to the possible use of polymeric nanocomposites systems, usually a nonconductive polymer containing nanometric inorganic fillers, as a replacement to the neat polymers offering better electrical and thermal properties. There is almost, nowadays, a consensus among the scientific community that such property enhancements can only be achieved when the nano-fillers present a reasonably good size dispersion and spatial distribution within the host polymer. However, due to nano-fillers’ strong tendency to agglomerate and their generally poor compatibility with commonly used polymers, to reach optimal dispersions has been found challenging in most cases. In order to improve the polymer/particles’ compatibility and therefore to avoid agglomeration and poor-dispersion problems, polyhedral oligomeric silsesquioxanes (POSS) appear to be a filler of choice since they are by nature nanoscaled molecules bearing built-in functionalities which can be selected according to the chemical nature of the host polymer. This chapter summarizes the investigations that were reported so far on the electrical properties of epoxy/POSS, PE/POSS, and PP/POSS systems. The general conclusion is that in the case of polyolefin/POSS composites, nanoscale dispersion was found to be hard to reach despite the selection alkyl-type POSS and the dielectric properties were not found to be strongly improved while in the case of epoxy/POSS systems, the selection of appropriate POSS compounds and a carefully chosen resin/additive/hardener ratio allow nanoscale dispersion accompanied with noticeable improvements of the dielectric properties.

Keywords

POSS Composites Epoxy Polyethylene Polypropylene Dielectric response Erosion resistance Breakdown strength 

References

  1. 1.
    Kremer F, Schönhals A,(eds) (2003) Broadband dielectric spectroscopy. Springer-Verlag, BerlinGoogle Scholar
  2. 2.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, LondonGoogle Scholar
  3. 3.
    Runt, JP Fitzgerald JJ (eds) (1997) Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications. ACS, Washington D.CGoogle Scholar
  4. 4.
    IEEE Standard 930 (2005) IEEE guide for the statistical analysis of electrical insulation breakdown data. IEEE Dielectrics and Electrical Insulation SocietyGoogle Scholar
  5. 5.
    Daran-Daneau C, David E, Fréchette MF, Savoie S (2012) Influence of the surrounding medium on the dielectric strength measurement of LLDPE/clay nanocomposites. In: IEEE international symposium on electrical insulation, pp 654–658Google Scholar
  6. 6.
    Helal E, David E, Fréchette M, Demarquette NR (2017) Thermoplastic elastomer nanocomposites with controlled nanoparticles dispersion for HV insulation systems: correlation between rheological, thermal, electrical and dielectric properties. Eur Polymer J 94:68–86CrossRefGoogle Scholar
  7. 7.
    Fina A, Tabuani D, Frache A, Camino G (2005) Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 46:7855–7866CrossRefGoogle Scholar
  8. 8.
    Takala M, Karttunen M, Salovaara P, Kortet S, Kannus K, Kalliohaka T (2008) Dielectric properties of nanostructured polypropylene-polyhedral oligomeric silsesquioxane compounds. IEEE Trans Dielectr Electr Insul 15:40–51CrossRefGoogle Scholar
  9. 9.
    Huang X, Xie L, Jiang P, Wang G, Yin Y (2009) Morphology studies and ac electrical property of low density polyethylene/octavinyl polyhedral oligomeric silsesquioxane composite dielectrics. Eur Polymer J 45:2172–2183CrossRefGoogle Scholar
  10. 10.
    Horwath, J, Schweickart D (2009) Inorganic fillers for corona endurance enhancement of selected polymers. In: IEEE international power modulator and high voltage conference (IPMHVC), pp 644–647Google Scholar
  11. 11.
    Guo M (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: electrical insulation for high-voltage power cables, Ph.D. thesis, École de Technologie SupérieureGoogle Scholar
  12. 12.
    Guo M, David E, Fréchette M, Demarquette NR (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: dielectric, thermal and rheological properties. Polymer 115:60–69CrossRefGoogle Scholar
  13. 13.
    Guo M, Fréchette M, David E, Demarquette NR (2015) Polyethylene-based dielectric composites containing polyhedral oligomeric silsesquioxanes obtained by ball milling. Trans Electr Electron Mater 16:53–61CrossRefGoogle Scholar
  14. 14.
    Guo M, Fréchette M, David E, Demarquette NR, Daigle JC (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: electrical insulation for high voltage power cables. IEEE Trans Dielectr Electr Insul 24:798–807CrossRefGoogle Scholar
  15. 15.
    Fréchette M, Guo M, David E, Min D, Li S (2017) The dielectric response of polyethylene/polyhedral oligomeric silsesquioxanes composites at various temperatures. IEEE conference on electrical insulation and dielectric phenomenon, pp 501–504Google Scholar
  16. 16.
    Guo M, David E, Fréchette M, Demarquette NR (2016) Low-Density Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites Obtained by Extrusion. In: IEEE conference on electrical insulation and dielectric phenomena, pp 647–650Google Scholar
  17. 17.
    Guo M, Fréchette M, David E, Demarquette NR (2016) Influence of fabrication techniques on the dielectric properties of PE/POSS polymeric composites. In: IEEE electrical insulation conference, pp 297–300Google Scholar
  18. 18.
    Guo M, Fréchette M, David E, Demarquette NR Daigle JC (2014) Polyethylene-based nanodielectrics containing octaisobutyl polyhedral oligomeric silsesquioxanes obtained by solution blending in xylene. In: IEEE conference on electrical insulation and dielectric phenomena, pp 731–734Google Scholar
  19. 19.
    DeArmitt C (2013) Polyhedral oligomeric silsesquioxane handbook http://phantomplastics.com/wp-content/uploads/2013/08/POSS-Handbook.pdf
  20. 20.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRefGoogle Scholar
  21. 21.
    Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, LondonGoogle Scholar
  22. 22.
    Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) Polymer nanocomposite dielectrics—the role of the interface. In: IEEE Trans. on dielectrics and electrical insulation, vol 12. pp 629–643CrossRefGoogle Scholar
  23. 23.
    Tsekmes IA, Morshuis PHF, Smit JJ, Kochetov R (2015) Enhancing the thermal and electrical performance of epoxy microcomposites with the addition of nanofillers. IEEE Electr Insul Mag 31(3):32–42CrossRefGoogle Scholar
  24. 24.
    Helal E, Pottier C, David E, Fréchette M, Demarquette NR (2018) Polyethylene/thermoplastic elastomer/Zinc Oxide nanocomposites for high voltage insulation applications: dielectric, mechanical and rheological behavior. Eur Polymer J 100:258–269CrossRefGoogle Scholar
  25. 25.
    Nicholson JW (2012) The chemistry of polymers, Royal Society of Chemistry, LondonGoogle Scholar
  26. 26.
    Lee H, Neville K (1967) Handbook of Epoxy Resins, McGraw Hill, New YorkGoogle Scholar
  27. 27.
    Tesoro G (1988) In: May CA(ed) Epoxy resins-chemistry and technology, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  28. 28.
    Mustata F, Bicu I, Cascaval CN (1997) Rheological and thermal behaviour of an epoxy resin modified with reactive diluents. J Polym Eng 17:491–506CrossRefGoogle Scholar
  29. 29.
    Wang RM, Zheng SR, Zheng YP (2011) Polymer matrix composites and technology, Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  30. 30.
    Liao YH, Marietta-Tondin O, Liang ZY, Zhang C, Wang B (2004) Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng A 385:175–181CrossRefGoogle Scholar
  31. 31.
    Hong SG, Wu CS (1998) DSC and FTIR analysis of the curing behaviors of epoxy/DICY/solvent open systems. Thermochim Acta 316:167–175CrossRefGoogle Scholar
  32. 32.
    Loos MR, Coelho LAF, Pezzin SH, Amico SC (2008) The effect of acetone addition on the properties of epoxy. Polimeros-Ciencia E Tecnologia 18:76–80CrossRefGoogle Scholar
  33. 33.
    Bakar M, Duk R, Przybylek M, Kostrzewa M (2009) Mechanical and thermal properties of epoxy resin modified with polyurethane. J Reinf Plast Compos 28:2107–2118CrossRefGoogle Scholar
  34. 34.
    Harani H, Fellahi S, Bakar M (1999) Toughening of epoxy resin using hydroxyl-terminated polyesters. J Appl Polym Sci 71:29–38CrossRefGoogle Scholar
  35. 35.
    Suprapakorn N, Dhamrongvaraporn S, Ishida H (1998) Effect of CaCO3 on the mechanical and rheological properties of a ring-opening phenolic resin: polybenzoxazine. Polym Compos 19:126–132CrossRefGoogle Scholar
  36. 36.
    Tang B, Liu XB, Zhao XL, Zhang JH (2014) Highly efficient in situ toughening of epoxy thermosets with reactive hyperbranched polyurethane, J Appl Polym Sci, 131Google Scholar
  37. 37.
    Heid T, Fréchette M, David E (2016) Enhanced electrical and thermal performances of nanostructured epoxy/POSS composites. IEEE Trans Dielectr Electr Insul 23:1732–1742CrossRefGoogle Scholar
  38. 38.
    Saeedi IA, Vaughan AS, Andritsch T (2016) On the dielectric performance of modified epoxy networks. In: IEEE international conference on dielectricsGoogle Scholar
  39. 39.
    Saeedi IA, Andritsch T, Vaughan AS (2017) Modification of resin/hardener stoichiometry using POSS and its effect on the dielectric properties of epoxy resin systems. In: International symposium on electrical insulating materials (ISEIM), pp 366–369Google Scholar
  40. 40.
    Horwath J, Schweickart D, Garcia G, Klosterman D, Galaska M (2005) Improved performance of polyhedral oligomeric silsesquioxane epoxies. In: IEEE conference on electrical insulation and dielectric phenomena, pp 155–157Google Scholar
  41. 41.
    Horwath JC, Schweickart DL, Garcia G, Klosterman D, Galaska M, Schrand A, Walko LC (2006) Improved electrical properties of epoxy resin with nanometer-sized inorganic fillers. In: Conference record of the 2006 twenty-seventh international power modulator symposium, pp 189–191Google Scholar
  42. 42.
    Heid T, Fréchette M, David E (2014) Nanostructured epoxy/POSS composites: high performance dielectrics with improved breakdown strength and corona resistance. In: IEEE conference on electrical insulation and dielectric phenomena, pp 659–662Google Scholar
  43. 43.
    Huang X, Li Y, Liu F, Jiang P, Iizuka T, Tatsumi K, Tanaka T (2014) Electrical properties of epoxy/POSS composites with homogeneous nanostructure. IEEE Trans Dielectr Electr Insul 21:1516–1528CrossRefGoogle Scholar
  44. 44.
    Heid T, Fréchette M, David E (2015) Nanostructured epoxy/POSS composites: enhanced materials for high voltage insulation applications. IEEE Trans Dielectr Electr Insul 22:1594–1604CrossRefGoogle Scholar
  45. 45.
    Bocek J, Matejka L, Mentlik V, Trnka P, Slouf M (2011) Electrical and thermomechanical properties of epoxy-POSS nanocomposites. Eur Polym J 47:861–872CrossRefGoogle Scholar
  46. 46.
    Lin Z, Lau S, Moon KS, Wong CP (2012) Polyhedral oligomeric silsesquioxanes (POSS)-filled underfill with excellent high temperature performance. In: IEEE electronic components and technology conference, pp 1599–1604Google Scholar
  47. 47.
    Mya KY, He CB, Huang JC, Xiao Y, Dai J, Siow YP (2004) Preparation and thermornechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. J Polym Sci Part a-Polym Chem 42:3490–3503CrossRefGoogle Scholar
  48. 48.
    Takala M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K (2008) Thermal, mechanical and dielectric properties of nanostructured epoxy-polyhedral oligomeric silsesquioxane composites. IEEE Trans Dielectr Electr Insul 15:1224–1235CrossRefGoogle Scholar
  49. 49.
    Heid T, Fréchette M, David E (2014) Nanostructured epoxy/POSS composites: high performance dielectrics with improved corona resistance and thermal conductivity. In: IEEE electrical insulation conference, pp 316–319Google Scholar
  50. 50.
    Zhang ZP, Liang GZ, Wang XL (2007) The effect of POSS on the thermal properties of epoxy. Polym Bull 58:1013–1020CrossRefGoogle Scholar
  51. 51.
    Villanueva M, Martin-Iglesias JL, Rodriguez-Anon JA, Proupin-Castineiras J (2009) Thermal study of an epoxy system DGEBA (n = 0)/MXDA modified with POSS. J Therm Anal Calorim 96:575–582CrossRefGoogle Scholar
  52. 52.
    Kourkoutsaki Th, Logakis E, Kroutilova I, Matejka L, Nedbal J, Pissis P (2009) Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsesquioxanes nanocomposites. J Appl Polym Sci 113:2569–2582CrossRefGoogle Scholar
  53. 53.
    Nelson JK (ed) (2010) Dielectric polymer nanocomposites. Springer Science + Business Media, New York, NYGoogle Scholar
  54. 54.
    David E, Fréchette M (2013) Polymer nanocomposites—major conclusions and achievements reached so Far. IEEE Electr Insul Mag 29(6):29–36CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.École de Technologie SupérieureMontrealCanada
  2. 2.University of SouthamptonSouthamptonUK

Personalised recommendations