Skip to main content

Dielectric Properties of Epoxy/POSS and PE/POSS Systems

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

In many applications in electronic power, and high-voltage engineering, there is a need to improve the electrical properties of existing insulation systems and/or to develop novel insulation materials with properties more suitable with the changing requirements, particularly in the electrotechnical area. During the last few decades, a considerable attention has been given to the possible use of polymeric nanocomposites systems, usually a nonconductive polymer containing nanometric inorganic fillers, as a replacement to the neat polymers offering better electrical and thermal properties. There is almost, nowadays, a consensus among the scientific community that such property enhancements can only be achieved when the nano-fillers present a reasonably good size dispersion and spatial distribution within the host polymer. However, due to nano-fillers’ strong tendency to agglomerate and their generally poor compatibility with commonly used polymers, to reach optimal dispersions has been found challenging in most cases. In order to improve the polymer/particles’ compatibility and therefore to avoid agglomeration and poor-dispersion problems, polyhedral oligomeric silsesquioxanes (POSS) appear to be a filler of choice since they are by nature nanoscaled molecules bearing built-in functionalities which can be selected according to the chemical nature of the host polymer. This chapter summarizes the investigations that were reported so far on the electrical properties of epoxy/POSS, PE/POSS, and PP/POSS systems. The general conclusion is that in the case of polyolefin/POSS composites, nanoscale dispersion was found to be hard to reach despite the selection alkyl-type POSS and the dielectric properties were not found to be strongly improved while in the case of epoxy/POSS systems, the selection of appropriate POSS compounds and a carefully chosen resin/additive/hardener ratio allow nanoscale dispersion accompanied with noticeable improvements of the dielectric properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kremer F, Schönhals A,(eds) (2003) Broadband dielectric spectroscopy. Springer-Verlag, Berlin

    Google Scholar 

  2. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press, London

    Google Scholar 

  3. Runt, JP Fitzgerald JJ (eds) (1997) Dielectric Spectroscopy of Polymeric Materials: Fundamentals and Applications. ACS, Washington D.C

    Google Scholar 

  4. IEEE Standard 930 (2005) IEEE guide for the statistical analysis of electrical insulation breakdown data. IEEE Dielectrics and Electrical Insulation Society

    Google Scholar 

  5. Daran-Daneau C, David E, Fréchette MF, Savoie S (2012) Influence of the surrounding medium on the dielectric strength measurement of LLDPE/clay nanocomposites. In: IEEE international symposium on electrical insulation, pp 654–658

    Google Scholar 

  6. Helal E, David E, Fréchette M, Demarquette NR (2017) Thermoplastic elastomer nanocomposites with controlled nanoparticles dispersion for HV insulation systems: correlation between rheological, thermal, electrical and dielectric properties. Eur Polymer J 94:68–86

    Article  CAS  Google Scholar 

  7. Fina A, Tabuani D, Frache A, Camino G (2005) Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 46:7855–7866

    Article  CAS  Google Scholar 

  8. Takala M, Karttunen M, Salovaara P, Kortet S, Kannus K, Kalliohaka T (2008) Dielectric properties of nanostructured polypropylene-polyhedral oligomeric silsesquioxane compounds. IEEE Trans Dielectr Electr Insul 15:40–51

    Article  CAS  Google Scholar 

  9. Huang X, Xie L, Jiang P, Wang G, Yin Y (2009) Morphology studies and ac electrical property of low density polyethylene/octavinyl polyhedral oligomeric silsesquioxane composite dielectrics. Eur Polymer J 45:2172–2183

    Article  CAS  Google Scholar 

  10. Horwath, J, Schweickart D (2009) Inorganic fillers for corona endurance enhancement of selected polymers. In: IEEE international power modulator and high voltage conference (IPMHVC), pp 644–647

    Google Scholar 

  11. Guo M (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: electrical insulation for high-voltage power cables, Ph.D. thesis, École de Technologie Supérieure

    Google Scholar 

  12. Guo M, David E, Fréchette M, Demarquette NR (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: dielectric, thermal and rheological properties. Polymer 115:60–69

    Article  CAS  Google Scholar 

  13. Guo M, Fréchette M, David E, Demarquette NR (2015) Polyethylene-based dielectric composites containing polyhedral oligomeric silsesquioxanes obtained by ball milling. Trans Electr Electron Mater 16:53–61

    Article  Google Scholar 

  14. Guo M, Fréchette M, David E, Demarquette NR, Daigle JC (2017) Polyethylene/polyhedral oligomeric silsesquioxanes composites: electrical insulation for high voltage power cables. IEEE Trans Dielectr Electr Insul 24:798–807

    Article  CAS  Google Scholar 

  15. Fréchette M, Guo M, David E, Min D, Li S (2017) The dielectric response of polyethylene/polyhedral oligomeric silsesquioxanes composites at various temperatures. IEEE conference on electrical insulation and dielectric phenomenon, pp 501–504

    Google Scholar 

  16. Guo M, David E, Fréchette M, Demarquette NR (2016) Low-Density Polyethylene/Polyhedral Oligomeric Silsesquioxanes Composites Obtained by Extrusion. In: IEEE conference on electrical insulation and dielectric phenomena, pp 647–650

    Google Scholar 

  17. Guo M, Fréchette M, David E, Demarquette NR (2016) Influence of fabrication techniques on the dielectric properties of PE/POSS polymeric composites. In: IEEE electrical insulation conference, pp 297–300

    Google Scholar 

  18. Guo M, Fréchette M, David E, Demarquette NR Daigle JC (2014) Polyethylene-based nanodielectrics containing octaisobutyl polyhedral oligomeric silsesquioxanes obtained by solution blending in xylene. In: IEEE conference on electrical insulation and dielectric phenomena, pp 731–734

    Google Scholar 

  19. DeArmitt C (2013) Polyhedral oligomeric silsesquioxane handbook http://phantomplastics.com/wp-content/uploads/2013/08/POSS-Handbook.pdf

  20. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  21. Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, London

    Google Scholar 

  22. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) Polymer nanocomposite dielectrics—the role of the interface. In: IEEE Trans. on dielectrics and electrical insulation, vol 12. pp 629–643

    Article  CAS  Google Scholar 

  23. Tsekmes IA, Morshuis PHF, Smit JJ, Kochetov R (2015) Enhancing the thermal and electrical performance of epoxy microcomposites with the addition of nanofillers. IEEE Electr Insul Mag 31(3):32–42

    Article  Google Scholar 

  24. Helal E, Pottier C, David E, Fréchette M, Demarquette NR (2018) Polyethylene/thermoplastic elastomer/Zinc Oxide nanocomposites for high voltage insulation applications: dielectric, mechanical and rheological behavior. Eur Polymer J 100:258–269

    Article  CAS  Google Scholar 

  25. Nicholson JW (2012) The chemistry of polymers, Royal Society of Chemistry, London

    Google Scholar 

  26. Lee H, Neville K (1967) Handbook of Epoxy Resins, McGraw Hill, New York

    Google Scholar 

  27. Tesoro G (1988) In: May CA(ed) Epoxy resins-chemistry and technology, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  28. Mustata F, Bicu I, Cascaval CN (1997) Rheological and thermal behaviour of an epoxy resin modified with reactive diluents. J Polym Eng 17:491–506

    Article  CAS  Google Scholar 

  29. Wang RM, Zheng SR, Zheng YP (2011) Polymer matrix composites and technology, Woodhead Publishing, Cambridge

    Chapter  Google Scholar 

  30. Liao YH, Marietta-Tondin O, Liang ZY, Zhang C, Wang B (2004) Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Mater Sci Eng A 385:175–181

    Article  Google Scholar 

  31. Hong SG, Wu CS (1998) DSC and FTIR analysis of the curing behaviors of epoxy/DICY/solvent open systems. Thermochim Acta 316:167–175

    Article  CAS  Google Scholar 

  32. Loos MR, Coelho LAF, Pezzin SH, Amico SC (2008) The effect of acetone addition on the properties of epoxy. Polimeros-Ciencia E Tecnologia 18:76–80

    Article  CAS  Google Scholar 

  33. Bakar M, Duk R, Przybylek M, Kostrzewa M (2009) Mechanical and thermal properties of epoxy resin modified with polyurethane. J Reinf Plast Compos 28:2107–2118

    Article  CAS  Google Scholar 

  34. Harani H, Fellahi S, Bakar M (1999) Toughening of epoxy resin using hydroxyl-terminated polyesters. J Appl Polym Sci 71:29–38

    Article  CAS  Google Scholar 

  35. Suprapakorn N, Dhamrongvaraporn S, Ishida H (1998) Effect of CaCO3 on the mechanical and rheological properties of a ring-opening phenolic resin: polybenzoxazine. Polym Compos 19:126–132

    Article  CAS  Google Scholar 

  36. Tang B, Liu XB, Zhao XL, Zhang JH (2014) Highly efficient in situ toughening of epoxy thermosets with reactive hyperbranched polyurethane, J Appl Polym Sci, 131

    Google Scholar 

  37. Heid T, Fréchette M, David E (2016) Enhanced electrical and thermal performances of nanostructured epoxy/POSS composites. IEEE Trans Dielectr Electr Insul 23:1732–1742

    Article  CAS  Google Scholar 

  38. Saeedi IA, Vaughan AS, Andritsch T (2016) On the dielectric performance of modified epoxy networks. In: IEEE international conference on dielectrics

    Google Scholar 

  39. Saeedi IA, Andritsch T, Vaughan AS (2017) Modification of resin/hardener stoichiometry using POSS and its effect on the dielectric properties of epoxy resin systems. In: International symposium on electrical insulating materials (ISEIM), pp 366–369

    Google Scholar 

  40. Horwath J, Schweickart D, Garcia G, Klosterman D, Galaska M (2005) Improved performance of polyhedral oligomeric silsesquioxane epoxies. In: IEEE conference on electrical insulation and dielectric phenomena, pp 155–157

    Google Scholar 

  41. Horwath JC, Schweickart DL, Garcia G, Klosterman D, Galaska M, Schrand A, Walko LC (2006) Improved electrical properties of epoxy resin with nanometer-sized inorganic fillers. In: Conference record of the 2006 twenty-seventh international power modulator symposium, pp 189–191

    Google Scholar 

  42. Heid T, Fréchette M, David E (2014) Nanostructured epoxy/POSS composites: high performance dielectrics with improved breakdown strength and corona resistance. In: IEEE conference on electrical insulation and dielectric phenomena, pp 659–662

    Google Scholar 

  43. Huang X, Li Y, Liu F, Jiang P, Iizuka T, Tatsumi K, Tanaka T (2014) Electrical properties of epoxy/POSS composites with homogeneous nanostructure. IEEE Trans Dielectr Electr Insul 21:1516–1528

    Article  CAS  Google Scholar 

  44. Heid T, Fréchette M, David E (2015) Nanostructured epoxy/POSS composites: enhanced materials for high voltage insulation applications. IEEE Trans Dielectr Electr Insul 22:1594–1604

    Article  CAS  Google Scholar 

  45. Bocek J, Matejka L, Mentlik V, Trnka P, Slouf M (2011) Electrical and thermomechanical properties of epoxy-POSS nanocomposites. Eur Polym J 47:861–872

    Article  CAS  Google Scholar 

  46. Lin Z, Lau S, Moon KS, Wong CP (2012) Polyhedral oligomeric silsesquioxanes (POSS)-filled underfill with excellent high temperature performance. In: IEEE electronic components and technology conference, pp 1599–1604

    Google Scholar 

  47. Mya KY, He CB, Huang JC, Xiao Y, Dai J, Siow YP (2004) Preparation and thermornechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. J Polym Sci Part a-Polym Chem 42:3490–3503

    Article  CAS  Google Scholar 

  48. Takala M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K (2008) Thermal, mechanical and dielectric properties of nanostructured epoxy-polyhedral oligomeric silsesquioxane composites. IEEE Trans Dielectr Electr Insul 15:1224–1235

    Article  CAS  Google Scholar 

  49. Heid T, Fréchette M, David E (2014) Nanostructured epoxy/POSS composites: high performance dielectrics with improved corona resistance and thermal conductivity. In: IEEE electrical insulation conference, pp 316–319

    Google Scholar 

  50. Zhang ZP, Liang GZ, Wang XL (2007) The effect of POSS on the thermal properties of epoxy. Polym Bull 58:1013–1020

    Article  CAS  Google Scholar 

  51. Villanueva M, Martin-Iglesias JL, Rodriguez-Anon JA, Proupin-Castineiras J (2009) Thermal study of an epoxy system DGEBA (n = 0)/MXDA modified with POSS. J Therm Anal Calorim 96:575–582

    Article  CAS  Google Scholar 

  52. Kourkoutsaki Th, Logakis E, Kroutilova I, Matejka L, Nedbal J, Pissis P (2009) Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsesquioxanes nanocomposites. J Appl Polym Sci 113:2569–2582

    Article  CAS  Google Scholar 

  53. Nelson JK (ed) (2010) Dielectric polymer nanocomposites. Springer Science + Business Media, New York, NY

    Google Scholar 

  54. David E, Fréchette M (2013) Polymer nanocomposites—major conclusions and achievements reached so Far. IEEE Electr Insul Mag 29(6):29–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

David, E., Andritsch, T. (2018). Dielectric Properties of Epoxy/POSS and PE/POSS Systems. In: Kalia, S., Pielichowski, K. (eds) Polymer/POSS Nanocomposites and Hybrid Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-02327-0_7

Download citation

Publish with us

Policies and ethics