POSS-Containing Polyamide-Based Nanocomposites

  • Biswajit SarkarEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Polyamide (PA) family of polymer is known as engineering plastics which are used in diverse industries such as synthetic fibers, automobiles, membranes. PA6 and PA66 are two major synthetic PAs that are widely used. Even though PAs possess several essential qualities, still some functional properties such as mechanical strength, rheological behavior, membrane permeability/permselectivity, flame retardancy need further improvement. Incorporation of POSS in PAs can improve those properties. In this chapter, we discussed POSS-containing PA nanocomposites. The influence of POSS on the structure and functional properties of PAs is discussed in particular.


Polyhedral oligomeric silsesquioxane (POSS) Polyamides Nanocomposites POSS-polyamide nanocomposites Morphology Functional properties Processing of nanocomposites 



Discussion and deliberation with Mr. Andrew Bodratti and Dr Swarup China during manuscript preparation were very helpful. Author gratefully acknowledges their contributions.


  1. 1.
    Sarkar B, Alexandridis P (2015) Block copolymer-nanoparticle composites: structure, functional properties, and processing. Prog Polym Sci 40:33–62CrossRefGoogle Scholar
  2. 2.
    Balazs AC, Emrick T, Russel TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110CrossRefGoogle Scholar
  3. 3.
    Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRefGoogle Scholar
  4. 4.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  5. 5.
    Crosby AJM, Lee J-Y (2007) Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev 47:217–229CrossRefGoogle Scholar
  6. 6.
    Vaia RA, Giannelis EP (2001) Polymer nanocomposites: status and opportunities. MRS Bull 26:394–401CrossRefGoogle Scholar
  7. 7.
    Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–319CrossRefGoogle Scholar
  8. 8.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng Rep 28:1–63CrossRefGoogle Scholar
  9. 9.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefGoogle Scholar
  10. 10.
    Shea KJ, Loy DA (2001) Bridged polysilsesquioxanes. molecular-engineered hybrid organic − inorganic materials. Chem Mater 13:3306–3319CrossRefGoogle Scholar
  11. 11.
    Lickiss PD, Rataboul F (2008) Fully Condensed polyhedral oligosilsesquioxanes (POSS): from synthesis to application. Adv Organomet Chem 57:1–116CrossRefGoogle Scholar
  12. 12.
    Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2:445–475CrossRefGoogle Scholar
  13. 13.
    Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696CrossRefGoogle Scholar
  14. 14.
    Milliman HW, Herbert MM, Schiraldi DA (2016) POSS® in tight places. Silicon 8:57–63CrossRefGoogle Scholar
  15. 15.
    Raftopoulos KN, Pielichowski K (2016) Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog Polym Sci 52:136–187CrossRefGoogle Scholar
  16. 16.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. supramolecular polymers polymeric betains oligomers. Adv Polym Sci 201:225–296CrossRefGoogle Scholar
  17. 17.
    Zhao J, Fu Y, Liu S (2008) Polyhedral oligomeric silsesquioxane (POSS)-modified thermoplastic and thermosetting nanocomposites: a review. Polym Polym Comp 16:483–500Google Scholar
  18. 18.
    Zhao F, Bao X, McLauchlin AR, Gu J, Wan C, Kandasubramanian B (2010) Effect of POSS on morphology and mechanical properties of polyamide 12/montmorillonite nanocomposites. Appl Clay Sci 47:249–256CrossRefGoogle Scholar
  19. 19.
    Wang SQ, Sharma M, Leong YW (2015) Polyamide 11/clay nanocomposite using polyhedral oligomeric silsesquioxane surfactants. Adv Mater Res 1110:65–68CrossRefGoogle Scholar
  20. 20.
    Dintcheva NT, Arrigo R, Teresi R, Gambarotti C (2017) Silanol-POSS as dispersing agents for carbon nanotubes in polyamide. Polym Eng Sci 57:588–594CrossRefGoogle Scholar
  21. 21.
    Sarkar B, Ayandele E, Venugopal V, Alexandridis P (2013) Polyhedral oligosilsesquioxane (POSS) nanoparticle localization in ordered structures formed by solvated block copolymers. Macromol Chem Phys 214:2716–2724CrossRefGoogle Scholar
  22. 22.
    Feldman D (2017) Polyamide nanocomposites. J Macromol Sci A 54:255–262CrossRefGoogle Scholar
  23. 23.
    Lu H, Xu X, Li X, Zhang Z (2006) Morphology, crystallization and dynamic mechanical properties of PA66/nano-SiO2composites. Bull Mater Sci 29:485–490CrossRefGoogle Scholar
  24. 24.
    Faridirad F, Ahmadi S, Barmar M (2017) Polyamide/carbon nanoparticles nanocomposites: a review. Polym Eng Sci 57:475–494CrossRefGoogle Scholar
  25. 25.
    Huang JC, Zhu ZK, Yin J, Zhang DM, Qian XF (2001) Preparation and properties of rigid-rod polyimide/silica hybrid materials by sol–gel process. J Appl Polym Sci 79:794–800CrossRefGoogle Scholar
  26. 26.
    Park S-Y, Cho Y-H, Vaia RA (2005) Three-dimensional structure of the zone-drawn film of the nylon-6/layered silicate nanocomposites. Macromolecules 38:1729–1735CrossRefGoogle Scholar
  27. 27.
    Bizet S, Galy J, Gerard JF (2006) Structure-property relationships in organic-inorganic nanomaterials based on methacryl-POSS and dimethacrylate networks. Macromolecules 39:2574–2583CrossRefGoogle Scholar
  28. 28.
    Huang JC, He C, Xian Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44:4491–4499CrossRefGoogle Scholar
  29. 29.
    Liu H, Kondo S, Tanaka R, Oku H, Unno M (2008) A spectroscopic investigation of incompletely condensed polyhedral oligomeric silsesquioxanes (POSS-mono-ol, POSS-diol and POSS-triol): hydrogen-bonded interaction and host–guest complex. J Organomet Chem 693:1301–1308CrossRefGoogle Scholar
  30. 30.
    Misra R, Fu BX, Plagge A, Morgan SE (2009) POSS-nylon 6 nanocomposites: influence of POSS structure on surface and bulk properties. J Polym Sci B Polym Phys 47:1088–1102CrossRefGoogle Scholar
  31. 31.
    Zhou Q, Pramoda KP, Lee JM, Wang K, Loo LS (2011) Role of interface in dispersion and surface energetics of polymer nanocomposites containing hydrophilic POSS and layered silicates. J Colloid Interface Sci 355:222–230CrossRefGoogle Scholar
  32. 32.
    Lim SK, Hong EP, Song YH, Choi HJ, Chin I-J (2012) Thermodynamic interaction and mechanical characteristics of Nylon 6 and polyhedral oligomeric silsesquioxane nanohybrids. J Mater Sci 47:308–314CrossRefGoogle Scholar
  33. 33.
    Milliman HW, Boris D, Schiraldi DA (2012) Experimental Determination of Hansen solubility parameters for select POSS and polymer compounds as a guide to POSS–polymer interaction potentials. Macromolecules 45(4):1931–1936CrossRefGoogle Scholar
  34. 34.
    Yilmaz S, Yilmaz T (2014) Effect of POSS and chain extender on tensile and fracture properties of neat and short glass fiber reinforced polyamide 6 composites. Compos Part A-Appl S 67:274–281CrossRefGoogle Scholar
  35. 35.
    Baldi F, Bignotti F, Ricco L, Monticelli O, Riccò T (2006) Mechanical and structural characterization of POSS-modified polyamide 6. J Appl Polym Sci 100:3409–3414CrossRefGoogle Scholar
  36. 36.
    Andena L, Fajardo NC, Manarini F, Mercante L (2013) Scratch and wear characteristics of polyamide nanocomposites. World Tribology Cong Italy Sept 8–13:1–4Google Scholar
  37. 37.
    Andrade RJ, Weinrich ZN, Ferreira CI, Schiraldi DA, Maia JM (2015) Optimization of melt blending process of nylon 6-POSS: improving mechanical properties of spun fibers. Polym Eng Sci 55:1580–1588CrossRefGoogle Scholar
  38. 38.
    Ricco L, Russo S, Monticelli O, Bordo A, Bellucci F (2005) ε-Caprolactum polymerization in presence of polyhedral olimeric silsesquioxanes (POSS). Polymer 46:6810–6819CrossRefGoogle Scholar
  39. 39.
    Milliman HW, Ishida H, Schiraldi DA (2012) Structure property relationships and the role of processing in the reinforcement of nylon 6-POSS blends. Macromolecules 45:4650–4657CrossRefGoogle Scholar
  40. 40.
    Zhou Q, Zhang J, Wang Y, Wang W, Yao S, Cong Y, Fang J (2016) Synergistic effects of filler-migration and moisture on the surface structure of polyamide 6 composites under an electric field. RSC Adv 6:95535–95541CrossRefGoogle Scholar
  41. 41.
    Ding Y, Chen G, Song J, Gou Y, Shi J, Jin R, Li Q (2012) Properties and morphology of supertoughened polyamide 6 hybrid composites. J Appl Polym Sci 126:194–204CrossRefGoogle Scholar
  42. 42.
    Li B, Zhang Y, Wang S, Ji J (2009) Effect of POSS on morphology and properties of poly(2,6-dimethyl-1,4-phenylene oxide)/polyamide 6 blends. Eur Polym J 45:2202–2210CrossRefGoogle Scholar
  43. 43.
    Kodal M (2016) Polypropylene/polyamide 6/POSS ternary nanocomposites: effects of POSS nanoparticles on the compatibility. Polymer 105:43–50CrossRefGoogle Scholar
  44. 44.
    Lim S-K, Lee JY, Choi HJ, Chin I-J (2015) On interaction characteristics of polyhedral oligomeric silsesquioxane containing polymer nanohybrids. Polym Bull 72:2331–2352CrossRefGoogle Scholar
  45. 45.
    Koech J, Omollo E, Nzioka F, Mwasiagi J (2017) Thermal analysis of polyamide 66/POSS nanocomposite fiber. Int J Tech Res 7:35–40Google Scholar
  46. 46.
    Gnanasekaran D, Shanavas A, Focke WW, Sadiku R (2015) Polyhedral oligomeric silsesquioxane/polyamide bio-nanocomposite membranes: structure-gas transport properties. RSC Adv 5:11272–11283CrossRefGoogle Scholar
  47. 47.
    Moon JH, Katha AR, Pandian S, Kolake SM, Han S (2014) Polyamide–POSS hybrid membranes for seawater desalination: effect of POSS inclusion on membrane properties. J Membrane Sci 461:89–95CrossRefGoogle Scholar
  48. 48.
    Ridgway HF, Orbell J, Gray S (2017) Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects. J Membrane Sci 524:436–448CrossRefGoogle Scholar
  49. 49.
    He Y, Tang YP, Chung TS (2016) Concurrent removal of selenium and arsenic from water using polyhedral oligomeric silsesquioxane (POSS)–polyamide thin-film nanocomposite nanofiltration membranes. Ind Eng Chem Res 55:12929–12938CrossRefGoogle Scholar
  50. 50.
    Duan J, Pan Y, Pacheco F, Litwiller E, Lai Z, Pinnau I (2015) High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J Membrane Sci 476:303–310CrossRefGoogle Scholar
  51. 51.
    Stevens DM, Shu JY, Reichert M, Roy A (2017) Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration. Ind Eng Chem Res 56:10526–10551CrossRefGoogle Scholar
  52. 52.
    Bandyopadhyay P, Banerjee S (2014) Synthesis, characterization and gas transport properties of polyamide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Ind Eng Chem Res 53:18273–18282CrossRefGoogle Scholar
  53. 53.
    Duan J, Litwiller E, Pinnau I (2015) Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes. J Membrane Sci 473:157–164CrossRefGoogle Scholar
  54. 54.
    Markarian J (2005) Flame retardants for polyamides—new developments and processing concerns. Plastics Additives Comp 7:22–25CrossRefGoogle Scholar
  55. 55.
    Qian Y, Wei P, Zhao X, Jiang P, Yu H (2013) Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire Mater 37:1–16CrossRefGoogle Scholar
  56. 56.
    Gentiluomo S, Veca AD, Monti M, Zaccone M, Zanetti M (2016) Fire behavior of polyamide 12 nanocomposites containing POSS and CNT. Polym Degrad Stab 134:151–156CrossRefGoogle Scholar
  57. 57.
    Zhang W, Li X, Yang R (2012) Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym Degrad Stab 97:1314–1324CrossRefGoogle Scholar
  58. 58.
    Zhang W, Camino G, Yang R, Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci 67:77–125CrossRefGoogle Scholar
  59. 59.
    Dasari A, Yu Z-Z, Mai Y-W, Cai G, Song H (2009) Roles of graphite oxide, clay and POSS during the combustion of polyamide 6. Polymer 50:1577–1587CrossRefGoogle Scholar
  60. 60.
    Andrade RJ, Huang R, Herbert MM, Chiaretti D, Ishida H, Schiraldi DA, Maia JM (2014) A thermo-rheological study on the structure property relationships in the reinforcement of nylon 6–POSS blends. Polymer 55:860–870CrossRefGoogle Scholar
  61. 61.
    Herbert MM, Andrade R, Ishida H, Maia J, Schiraldi DA (2013) Multilayered confinement of iPP/TPOSS and nylon 6/APOSS blends. Polymer 54:6992–7003CrossRefGoogle Scholar
  62. 62.
    Zhou Q, Cong Y, Wu N, Loo LS (2015) The microstructure of polyamide 6 and polyamide 6/polyhedral oligomeric silsesquioxane nanocomposites synthesized by phase inversion procedure under electric field. Appl Surf Sci 357:1454–1462CrossRefGoogle Scholar
  63. 63.
    Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X (2007) Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polym Degrad Stab 92:1986–1993CrossRefGoogle Scholar
  64. 64.
    Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD (1999) Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 32:1194–1203CrossRefGoogle Scholar
  65. 65.
    Gao F, Tong YH, Schiricker SR, Culbertson BM (2001) Evaluation of neat resins based on methacrylates modified with methacryl-POSS, as potnetial organic-inorganic hybrids for formulating dental restoratives. Polym Adv Technol 12:355–360CrossRefGoogle Scholar
  66. 66.
    Kannan RY, Salacinski HJ, Edirisnghe MJ, Hamilton G, Salacinski HJ (2006) Polyhedral oligomeric silsequioxane-polyurethane nanocomposite microvessles for an artificial capillary bed. Biomaterials 27:4618–4626CrossRefGoogle Scholar
  67. 67.
    Jash P, Wilkie CA (2005) Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites. Polym Degrad Stab 88:401–406CrossRefGoogle Scholar
  68. 68.
    Rios-Dominguez H, Ruiz-Trevino FA, Contreras-Reyes R, Gonzalez-Montiel A (2006) Synthesis and evaluation of gas transport properties of polystyrene-POSS membranes. J Mater Sci 271:94–100Google Scholar
  69. 69.
    Devaux E, Rochery M, Bourbigot S (2002) Polyurethene/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton febrics. Fire Mater 26:149–154CrossRefGoogle Scholar
  70. 70.
    Lu C-H, Kuo S-W, Chang W-T, Chang F-C (2009) The Self-assembled structure of the diblock copolymer PCL-b-P4VP transforms upon competitive interactions with octaphenol polyhedral oligomeric silsesquioxane. Macromol Rapid Commn 30:2121–2127CrossRefGoogle Scholar
  71. 71.
    Daga VK, Anderson ER, Gido SP, Watkins JJ (2011) Hydrogen bond assisted assembly of well-ordered polyhedral oligomeric silsesquioxane–block copolymer composites. Macromolecules 44:6793–6799CrossRefGoogle Scholar
  72. 72.
    Bai J, Shi Z, Yin J, Tian M (2014) A simple approach to preparation of polyhedral oligomeric silsesquioxane crosslinked poly(styrene-b-butadiene-b-styrene) elastomers with a unique micro-morphology via UV-induced thiol–ene reaction. Polym Chem 5:6761–6769CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloUSA
  2. 2.Intel CorporationHillsboroUSA

Personalised recommendations