Polyolefins with POSS

  • M. PracellaEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


The influence of POSS structure and mixing processes on the structural and morphological characteristics, and the thermal, mechanical and rheological behaviour of polyolefin/POSS nanocomposites have been reviewed in the present chapter. POSS molecules ([RSiO1,5]p) with various organic substituents (R), both of non-reactive and reactive type, have been examined. In particular, the properties of systems with polyethylene, polypropylene or ethylene–propylene copolymer matrix (HDPE/POSS, LDPE/POSS, PP/POSS, EP/POSS), and vinyl polymers (PS/POSS), containing linear and branched alkyl-substituted POSS have been analysed at various compositions and preparation conditions. The studies indicated that the length of alkyl groups on POSS molecules plays a fundamental role in determining the POSS dispersion degree in the polymer matrix during the melt mixing process, as well as the crystallization, thermal and mechanical behaviour of these composites. Then, the properties of binary and ternary systems containing polyolefin grafted with reactive groups (such as PP-g-MA) and POSS functionalized with amino groups (am-POSS)—able to induce grafting reactions of POSSs on the polymer chains in melt mixing—have been reported. It was demonstrated that the grafting promotes the compatibilization of the nanocomposites, increasing POSS dispersion up to molecular level and improving mechanical and thermal resistance. Moreover, the isothermal and non-isothermal crystallization processes and the crystalline morphology of polyolefin/POSS systems have been analysed with the aim of investigating the nucleation activity of POSS nanoparticles on the crystal growth and the overall crystallization kinetics of the polyolefin matrix.


Polymer composites Polyolefins Polysilsesquioxanes Morphology Thermal behaviour Mechanical properties Reactive mixing 



Ethylene–propylene copolymer


High-density polyethylene


Low-density polyethylene


Polyethylene oxide-polyethylene-POSS triblock copolymer


Polyethylene terephthalate


Poly(isobutyl methacrylate)




Polymethylmethacrylate-polymethacrylate POSS block copolymer


Isotactic polypropylene


Maleic anhydride-grafted PP


POSS-grafted PP








Polystyrene-polymethacrylate POSS block copolymer








4,4′-Bis(heptacyclopentyl-T8-silsesquioxyl)phenyl ether
























  1. 1.
    Zhang W, Camino G, Yang R (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci 67:77–125CrossRefGoogle Scholar
  2. 2.
    Li G, Wang L, Ni H, Pittman CU Jr (2001) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. J Inorg Organomet Polym 11(3):123–154CrossRefGoogle Scholar
  3. 3.
    Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P (2001) Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci B Polym Phys 39:2727–2739CrossRefGoogle Scholar
  4. 4.
    Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 45:4953–4968CrossRefGoogle Scholar
  5. 5.
    Zeng J, Kumar S, Iyer S, Schiraldi DA, Gonzalez RI (2005) Reinforcement of poly(ethylene terephthalate) fibers with polyhedral oligomeric silsesquioxanes (POSS). High Perform Polym 17:403–424CrossRefGoogle Scholar
  6. 6.
    Li S, Simon GP, Matisons JG (2010) Morphology of blends containing high concentrations of POSS nanoparticles in different polymer matrices. Polym Eng Sci 50(5):991–999CrossRefGoogle Scholar
  7. 7.
    Misra R, Fu BX, Plagge A, Morgan SE (2009) POSS-nylon 6 nanocomposites: influence of POSS structure on surface and bulk properties. J Polym Sci B Polym Phys 47:1088–1102CrossRefGoogle Scholar
  8. 8.
    Ramasundaram SP, Kim KJ (2007) In-situ synthesis and characterization of polyamide 6/POSS nanocomposites. Macromol Symp 249–250:295–302CrossRefGoogle Scholar
  9. 9.
    Cai H, Zhang X, Xu K, Liu H, Su J, Liu X et al (2012) Preparation and properties of polycarbonate/polyhedral oligomeric silsesquioxanes (POSS) hybrid composites. Polym Adv Technol 23:765–775CrossRefGoogle Scholar
  10. 10.
    Zhao Y, Schiraldi DA (2005) Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46:11640–11647CrossRefGoogle Scholar
  11. 11.
    Matejka L, Strachota A, Plestil J, Whelan P, Steinhar M, Šlouf M (2004) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS): structure and morphology. Macromolecules 37:9449–9456CrossRefGoogle Scholar
  12. 12.
    Strachota A, Kroutilova I, Kovarova J, Matejka L (2004) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical properties. Macromolecules 37:9457–9464CrossRefGoogle Scholar
  13. 13.
    Liu L, Tian M, Zhang W, Zhang L, Mark JE (2007) Crystallization and morphology study of polyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by melt blending. Polymer 48:3201–3212CrossRefGoogle Scholar
  14. 14.
    Zheng L, Waddon AJ, Farris RJ, Coughlin EB (2002) X-ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromolecules 35:2375–2379CrossRefGoogle Scholar
  15. 15.
    Blanco I, Bottino FA (2015) The influence of the nature of POSSs cage’s periphery on the thermal stability of a series of new bridged POSS/PS nanocomposites. Polym Degrad Stab 121:180–186CrossRefGoogle Scholar
  16. 16.
    Joshi M, Butola BS, Simon G, Kukaleva N (2006) Rheological and viscoelastic behaviour of HDPE/octamethyl-POSS nanocomposites. Macromolecules 39(5):1839–1849CrossRefGoogle Scholar
  17. 17.
    Hato MJ, Ray SS, Luyt AS (2008) Nanocomposites based on polyethylene and polyhedral oligomeric silsesquioxanes, 1– microstructure, thermal and thermomechanical properties. Macromol Mater Eng 293(9):752–762CrossRefGoogle Scholar
  18. 18.
    Niemczyk A, Dziubek K, Sacher-Majewska B, Czaja K, Dutkiewicz M, Marciniec B (2016) Study of thermal properties of polyethylene and polypropylene nanocomposites with long alkyl chain-substituted POSS fillers. J Therm Anal Calorim 125(3):1287–1299CrossRefGoogle Scholar
  19. 19.
    Perrin FX, Panaitescu DM, Frone AN, Radovici C, Nicolae C (2013) The influence of alkyl substituents of POSS in polyethylene nanocomposites. Polymer 54:2347–2354CrossRefGoogle Scholar
  20. 20.
    Heeley EL, Hughes DJ, El Aziz Y, Taylor PG, Bassindale AR (2013) Linear long alkyl chain substituted POSS cages: the effect of alkyl chain length on the self-assembled packing morphology. Macromolecules 46(12):4944–4954CrossRefGoogle Scholar
  21. 21.
    Heeley EL, Hughes DJ, El Aziz Y, Taylor PG, Bassindale AR (2015) Crystallization and morphology development in polyethylene–octakis (n-octadecyldimethylsiloxy)-octasilsesquioxane nanocomposite blends. RSC Adv 5:34709–34719CrossRefGoogle Scholar
  22. 22.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440:36–42CrossRefGoogle Scholar
  23. 23.
    Frone AN, Perrin FX, Radovici C, Panaitescu DM (2013) Influence of branched or un-branched alkyl substitutes of POSS on morphology, thermal and mechanical properties of polyethylene. Composites Part B 50:98–106CrossRefGoogle Scholar
  24. 24.
    Fu BX, Gelfer MY, Hsiao BS, Phillips S, Viers B, Blanski R, Ruth P (2003) Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules. Polymer 44:1499–1506CrossRefGoogle Scholar
  25. 25.
    Fina A, Tabuani D, Frache A, Camino G (2005) Polypropylene-polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 46:7855–7866CrossRefGoogle Scholar
  26. 26.
    Pracella M, Chionna D, Fina A, Tabuani D, Frache A, Camino G (2006) Polypropylene-POSS nanocomposites: morphology and crystallization behaviour. In: Pirozzi B, Roviello A (eds) Trends and perspectives in polymer science and technology. Macromol Symp 234:59–67Google Scholar
  27. 27.
    Chen JH, Yao BX, Su WB, Yang YB (2007) Isothermal crystallization behavior of isotactic polypropylene blended with small loading of polyhedral oligomeric silsesquioxane. Polymer 48:1756–1769CrossRefGoogle Scholar
  28. 28.
    Fina A, Tabuani D, Camino G (2010) Polypropylene–polysilsesquioxane blends. Eur Polym J 46:14–23CrossRefGoogle Scholar
  29. 29.
    Wunderlich B (1976) Macromolecular physics, crystal nucleation, growth, annealing, vol 2. Academic Press, New York, Chapter VIGoogle Scholar
  30. 30.
    Pracella M (2013) Crystallization of polymer blends. In: Piorkowska E, Rutledge G (eds) Handbook of polymer crystallization, Wiley, Hoboken, Chapter 10CrossRefGoogle Scholar
  31. 31.
    Bartczak Z, Galeski A, Pracella M (1986) Spherulite nucleation in blends of isotactic polypropylene with high-density polyethylene. Polymer 27:537–543CrossRefGoogle Scholar
  32. 32.
    Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158CrossRefGoogle Scholar
  33. 33.
    Dobreva A, Vassilev T, de Saja JA, Rodriguez MA, Gutzow I (1999) Unified thermodynamic approach for describing the nucleating activity of substrates in the induced crystallization of undercooled glass-forming liquids. J Non Cryst Solids 253(1–3):157–162CrossRefGoogle Scholar
  34. 34.
    Baldi F, Bignotti F, Ricco L, Monticelli O, Ricco T (2007) Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. J Appl Polym Sci 105:935–943CrossRefGoogle Scholar
  35. 35.
    Dintcheva NT, Morici E, Arrigo R, La Mantia FP, Malatesta V, Schwab JJ (2012) UV-stabilisation of polystyrene-based nanocomposites provided by polyhedral oligomeric silsesquioxanes (POSS). Polym Degrad Stab 97(11):2313–2322CrossRefGoogle Scholar
  36. 36.
    Pracella M (2017) Blends and alloys. In: Jasso-Gastinel CF, Kenny JM (eds) Modification of polymer properties, Elsevier, Oxford, Chapter 7Google Scholar
  37. 37.
    Waddon AJ, Zheng L, Farris RJ, Coughlin EB (2002) Nanostructured polyethylene-POSS copolymers: control of crystallization and aggregation. Nano Lett 2:1149–1155CrossRefGoogle Scholar
  38. 38.
    Zhou Z, Cui L, Zhang Y, Zhang Y, Yin N (2008) Preparation and properties of POSS grafted polypropylene by reactive blending. Eur Polym J 44:3057–3066CrossRefGoogle Scholar
  39. 39.
    Pracella M, Pancrazi C, Bartczak Z (2009) Reactive mixing of polypropylene/POSS nanocomposites. Crystallization, morphology and thermal properties. In: Proceedings 17th International Conference on Composite Materials, Edinbourgh, UK, 27–31 JulyGoogle Scholar
  40. 40.
    Grala M, Bartczak Z, Pracella M (2013) Morphology and mechanical properties of polypropylene-POSS hybrid nanocomposites obtained by reactive blending. Polym Compos 34(6):929–941CrossRefGoogle Scholar
  41. 41.
    Wei Q, Chionna D, Galoppini E, Pracella M (2003) Functionalization of LDPE by melt grafting with glycidyl methacrylate and reactive blending with polyamide-6. Macromol Chem Phys 204:1123–1133CrossRefGoogle Scholar
  42. 42.
    Hoyos M, Fina A, Carniato F, Prato M, Monticelli O (2011) Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti-POSS by direct reactive blending. Polym Degrad Stab 96:1793–1798CrossRefGoogle Scholar
  43. 43.
    Psarski M, Pracella M, Galeski A (2000) Crystal phase and crystallinity of polyamide-6/functionalized polyolefin blends. Polymer 41:4923–4932CrossRefGoogle Scholar
  44. 44.
    Hoffmann JD, Davis GT, Lauritzen JI (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay NB (ed) Treatise on solid state chemistry, Vol 3. Plenum Press, New York, Chapter 7CrossRefGoogle Scholar
  45. 45.
    Bartczak Z, Kozanecki M (2005) Influence of molecular parameters on high-strain deformation of polyethylene in the plane-strain compression. Part I. Stress–strain behavior. Polymer 46:8210–8221CrossRefGoogle Scholar
  46. 46.
    Zhou Z, Ouyang C, Zhang Y, Zhang Y, Yin N (2009) Crystallization and rheological behavior of POSS filled polypropylene. e-Polymers 9(1):036Google Scholar
  47. 47.
    Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696CrossRefGoogle Scholar
  48. 48.
    Lin HM, Wu SY, Huang PY, Huang CF, Kuo SW, Chang FC (2006) Polyhedral oligomeric silsesquioxane containing copolymers for negative type photoresists. Macromol Rapid Commun 27:1550–1555CrossRefGoogle Scholar
  49. 49.
    Xiao S, Nguyen M, Gong X, Cao Y, Wu HB, Moses D, Heeger AJ (2003) Stabilization of semiconducting polymers with silsesquioxane. Adv Funct Mater 13:25–29CrossRefGoogle Scholar
  50. 50.
    Cheng CC, Yen YC, Ko FH, Chu CW, Fan SK, Chang FC (2012) A new supramolecular film formed from a silsesquioxane derivative for application in proton exchange membranes. J Mater Chem 22:731–734CrossRefGoogle Scholar
  51. 51.
    Zhang W, Müller AHE (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38:1121–1162CrossRefGoogle Scholar
  52. 52.
    Miao JJ, Cui L, Lau HP, Mather PT, Zhu L (2007) Self-assembly and chain-folding in hybrid coil-coil-cube triblock oligomers of polyethylene-b-poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane. Macromolecules 40:5460–5470CrossRefGoogle Scholar
  53. 53.
    Hirai T, Leolukman M, Jin S, Goseki R, Ishida Y, Kakimoto M, Hayakawa T, Ree M, Gopalan P (2009) Hierarchical self-assembled structures from POSS-containing block copolymers synthesized by living anionic polymerization. Macromolecules 42:8835–8843CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.National Research Council, Institute for Physical and Chemical Processes, c/o Department of Civil EngineeringUniversity of PisaPisaItaly

Personalised recommendations