Self-assembly of POSS-Containing Materials

  • Anna KowalewskaEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Polyhedral oligomeric silsesquioxanes (POSS) are unique nanoscale compounds that play a very important role in nanotechnology and materials science. The three-dimensional hybrid molecular clusters can form a range of well-defined supramolecular structures, owing to their intrinsic ability for aggregation. The organization of POSS in the solid state provides a non-covalent “crystalline template” approach. Understanding the mechanisms behind the cooperative interactions in POSS-based materials allows for the tailored performance of the building blocks and is essential for the development of novel hierarchical hybrid materials. Numerous reports have been published on various aspects of POSS chemistry and technology. This chapter presents an overview of selected contributions to the field of POSS-based nanostructured materials and the phenomena operating at the nanolevel in the truly beautiful world of the self-assembling polyhedra.


Polyhedral silsesquioxanes Self-assembly Crystal packing Interface Templating Surfactants MOF Liquid crystals Optoelectronics Advanced materials Biomaterials 


  1. 1.
    Wang L, Du W, Wu Y, Xu R, Yu D (2012) Synthesis and characterizations of a latent polyhedral oligomeric silsesquioxane-containing catalyst and its application in polybenzoxazine resin. J Appl Polym Sci 126:150–155CrossRefGoogle Scholar
  2. 2.
    Lee YJ, Huang JM, Kuo SW, Chang FC (2005) Low-dielectric, nanoporous polyimide films prepared from PEO–POSS nanoparticles. Polymer 46:10056–10065CrossRefGoogle Scholar
  3. 3.
    Eon D, Raballand V, Cartry G, Cardinaud C, Vourdas N, Argitis P, Gogolides E (2006) Plasma oxidation of polyhedral oligomeric silsesquioxane polymers. J Vac Sci Technol B 24:2678–2688CrossRefGoogle Scholar
  4. 4.
    Hirai T, Leolukman M, Liu CC, Han E, Kim YJ, Ishida Y, Hayakawa T, Kakimoto MA, Nealey PF, Gopalan P (2009) One-step direct-patterning template utilizing self-assembly of POSS-containing block copolymers. Adv Mater 21:4334–4338PubMedCrossRefGoogle Scholar
  5. 5.
    Kuo S-W, Chang F-C (2011) POSS related polymer nanocomposites. Progr Polym Sci 36:1649–1696CrossRefGoogle Scholar
  6. 6.
    Zhang W, Müller AHE (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Progr Polym Sci 38:1121–1162CrossRefGoogle Scholar
  7. 7.
    Lim S-K, Lee JY, Choi HJ, Chin I-J (2015) On interaction characteristics of polyhedral oligomeric silsesquioxane containing polymer nanohybrids. Polym Bull 72:2331–2352CrossRefGoogle Scholar
  8. 8.
    Mammeri F, Bonhomme C, Ribot F, Babonneau F, Dirè S (2009) New monofunctional POSS and its utilization as dewetting additive in methacrylate based free-standing films. Chem Mater 21:4163–4171CrossRefGoogle Scholar
  9. 9.
    Żubrowska A, Piórkowska E, Kowalewska A, Cichorek M (2015) Novel blends of polylactide with ethylene glycol derivatives of POSS. Colloid Polym Sci 293:23–33PubMedCrossRefGoogle Scholar
  10. 10.
    Kowalewska A, Fortuniak W, Chojnowski J, Pawlak A, Gadzinowska K, Zaród M (2012) Polymer nano-materials through self-assembly of polymeric POSS systems. Silicon 4:95–107CrossRefGoogle Scholar
  11. 11.
    Grala M, Bartczak Z (2015) Morphology and mechanical properties of high density polyethylene-POSS hybrid nanocomposites obtained by reactive blending. Polym Eng Sci 55:2058–2072CrossRefGoogle Scholar
  12. 12.
    Frone AN, Perrin FX, Radovici C, Panaitescu DM (2013) Influence of branched or un-branched alkyl substitutes of POSS on morphology, thermal and mechanical properties of polyethylene. Composites Part B 50:98–106CrossRefGoogle Scholar
  13. 13.
    Sarkar B, Ayandele E, Venugopal V, Alexandridis P (2013) Polyhedral oligosilsesquioxane (POSS) nanoparticle localization in ordered structures formed by solvated block copolymers. Macromol Chem Phys 214:2716–2724CrossRefGoogle Scholar
  14. 14.
    Martins JN, Bianchi O, Wanke CH, Dal Castel C, Oliveira RVB (2015) Effects of POSS addition on non-isothermal crystallization and morphology of PVDF. J Polym Res 22:224CrossRefGoogle Scholar
  15. 15.
    Zhang D, Shi Y, Liu Y, Huang G (2014) Influences of polyhedral oligomeric silsesquioxanes (POSSs) containing different functional groups on crystallization and melting behaviors of POSS/polydimethylsiloxane rubber composites. RSC Adv 4:41364–41370CrossRefGoogle Scholar
  16. 16.
    Jeon J-H, Tanaka K, Chujo Y (2014) Light-driven artificial enzymes for selective oxidation of guanosine triphosphate using water-soluble POSS network polymers. Org Biomol Chem 12:6500–6506PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Teng CP, Mya KY, Win KY, Yeo CC, Low M, He C, Han M-Y (2014) Star-shaped polyhedral oligomeric silsesquioxane-polycaprolactone-polyurethane as biomaterials for tissue engineering application. NPG Asia Mater 6:e142CrossRefGoogle Scholar
  18. 18.
    Wysokowski M, Materna K, Walter J, Petrenko I, Stelling AL, Bazhenov VV, Klapiszewski Ł, Szatkowski T, Lewandowska O, Stawski D, Molodtsov SL, Maciejewski H, Ehrlich H, Jesionowski T (2015) Solvothermal synthesis of hydrophobic chitin–polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Int J Biol Macromol 78:224–229PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kakuta T, Tanaka K, Chujo Y (2015) Synthesis of emissive water-soluble network polymers based on polyhedral oligomeric silsesquioxane and their application as optical sensors for discriminating the particle size. J Mater Chem C 3:12539–12545CrossRefGoogle Scholar
  20. 20.
    Gon M, Sato K, Tanaka K, Chujo Y (2016) Controllable intramolecular interaction of 3D arranged π-conjugated luminophores based on a POSS scaffold, leading to highly thermally-stable and emissive materials. RSC Adv 6:78652–78660CrossRefGoogle Scholar
  21. 21.
    Asad U, Shakir U, Gul SK, Syed MS, Zakir H, Saz M, Muhammad S, Hazrat H (2016) Water soluble polyhedral oligomeric silsesquioxane based amphiphilic hybrid polymers: synthesis, self-assembly, and applications. Eur Polym J 75:67–92CrossRefGoogle Scholar
  22. 22.
    Yu X, Li Y, Dong X-H, Yue K, Lin Z, Feng X, Huang M, Zhang W-B, Cheng SZD (2014) Giant surfactants based on molecular nanoparticles: precise synthesis and solution self-assembly. J Polym Sci Part B Polym Phys 52:1309–1325CrossRefGoogle Scholar
  23. 23.
    Ullah A, Ullah S, Khan GS, Shah SM, Hussain Z, Muhammada S, Siddiq M, Hussain H (2016) Water soluble polyhedral oligomeric silsesquioxane based amphiphilic hybrid polymers: synthesis, self-assembly, and applications. Eur Polym J 75:67–92CrossRefGoogle Scholar
  24. 24.
    Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746CrossRefGoogle Scholar
  25. 25.
    Lickiss PD, Rataboul F (2088) Fully condensed polyhedral oligosilsesquioxanes (POSS): from synthesis to application. In: West R (ed) Advances in organometallic chemistry, vol 57. Elsevier Inc., The Netherlands, pp 1–116Google Scholar
  26. 26.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefGoogle Scholar
  27. 27.
    Cordes DB, Lickiss PD (2011) Preparation and characterization of polyhedral oligosilsesquioxanes. In: Hartmann-Thompson C (ed) Advances in silicon science, vol 3. Springer Science B. V., Berlin, pp 47–113Google Scholar
  28. 28.
    Laine RM (2005) Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanes. J Mater Chem 15:3725–3744Google Scholar
  29. 29.
    Marcolli C, Calzaferri G (1999) Monosubstituted octasilasesquioxanes. Appl Organomet Chem 13:213–226CrossRefGoogle Scholar
  30. 30.
    Feher FJ, Wyndham KD, Baldwin RK, Soulivong D, Lichtenhan JD, Ziller JW (1999) Methods for effecting monofunctionalization of (CH2=CH)8Si8O12. Chem Commun 1289–1290Google Scholar
  31. 31.
    Li Y, Guo K, Su H, Li X, Feng X, Wang Z, Zhang W, Zhu S, Wesdemiotis C, Cheng SZD, Zhang W-B (2014) Tuning, “thiol-ene” reactions toward controlled symmetry breaking in polyhedral oligomeric silsesquioxanes. Chem Sci 5:1046–1053CrossRefGoogle Scholar
  32. 32.
    Ye Q, Zhou H, Xu J (2016) Cubic polyhedral oligomeric silsesquioxane based functional materials: synthesis, assembly, and applications. Chem Asian J 11:1322–1337PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kowalewska A (2017) Self-assembling polyhedral silsesquioxanes—structure and properties. Curr Org Chem 21:1234–1264CrossRefGoogle Scholar
  34. 34.
    Barry AJ, Daudt WH, Domicone JJ, Gilkey JW (1955) Crystalline organosilsesquioxanes. J Am Chem Soc 77:4248–4252CrossRefGoogle Scholar
  35. 35.
    Auner N, Ziemer B, Herrschaft B, Ziche W, John P, Weis J (1999) Structural studies of novel siloxysilsesquioxanes. Eur J Inorg Chem 7:1087–1094CrossRefGoogle Scholar
  36. 36.
    Bolln C, Tsuchida A, Frey H, Mülhaupt R (1997) Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater 9:1475–1479CrossRefGoogle Scholar
  37. 37.
    Perrin FX, Nguyen TBV, Margaillan A (2011) Linear and branched alkyl substituted octakis(dimethylsiloxy)-octasilsesquioxanes: WAXS and thermal properties. Eur. Polym. J. 47:1370–1382CrossRefGoogle Scholar
  38. 38.
    Waddon AJ, Coughlin EB (2003) Crystal structure of polyhedral oligomeric silsequioxane (POSS) nano-materials: a study by X-ray diffraction and electron microscopy. Chem Mater 15:4555–4561CrossRefGoogle Scholar
  39. 39.
    Bassindale AR, Chen H, Liu Z, MacKinnon IA, Parker DJ, Taylor PG, Yang Y, Light ME, Horton PN, Hursthouse MB (2004) A higher yielding route to octasilsesquioxane cages using tetrabutylammonium fluoride, Part 2: further synthetic advances, mechanistic investigations and X-ray crystal structure studies into the factors that determine cage geometry in the solid state. J Organomet Chem 689:3287–3300CrossRefGoogle Scholar
  40. 40.
    Larsson K (1960) Crystal structure of (HSiO1.5)8. Arkiv foer Kemi 16:215–219Google Scholar
  41. 41.
    Larsson K (1960) Crystal structure of octa(methylsilsesquioxane), (CH3SiO1.5)8. Arkiv foer Kemi 16:203–208Google Scholar
  42. 42.
    Larsson, K (1960)Crystal structure of substituted octa(silsesquioxanes), (RSiO1.5)8 and (ArSiO1.5)8. Arkiv foer Kemi 16:209–214Google Scholar
  43. 43.
    Handke B, Jastrzębski W, Kwaśny M (2012) Klita, Structural studies of octahydridooctasilsesquioxane—H8Si8O12. J Mol Struct 1028:68–72CrossRefGoogle Scholar
  44. 44.
    Törnroos KW (1994) Octahydridosilasesquioxane determined by neutron diffraction. Acta Cryst C50:1646–1648Google Scholar
  45. 45.
    Cordes DB, Lickiss PD (2011) Preparation and characterization of polyhedral oligosilsesquioxanes. In: Hartmann-Thompson C (ed) Applications of polyhedral oligomeric silsesquioxanes, vol 3. Advances in silicon science. Springer Science B.V., The Netherlands, pp 47–113Google Scholar
  46. 46.
    Podberezskaya NV, Baidina IA, Alekseev VI, Borisov SV, Martynova TN (1982) X-ray structural study of silasesquioxanes. The crystal structure of octa(allylsilasesquioxane). J Struct Chem 22:737–740CrossRefGoogle Scholar
  47. 47.
    El Aziz Y, Bassindale AR, Taylor PG, Stephenson RA, Hursthouse MB, Harrington RW, Clegg W (2013) X-ray crystal structures, packing behavior, and thermal stability studies of a homologous series of n-alkyl-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 46:988–1001CrossRefGoogle Scholar
  48. 48.
    Chinnam PR, Gau MR, Schwab J, Zdilla MJ, Wunder SL (2014) The polyoctahedral silsesquioxane (POSS) 1,3,5,7,9,11,13,15-octaphenylpentacyclo[9,5,1,13,9,15,15,17,13]-octasiloxane (octaphenyl-POSS). Acta Cryst C70:971–974Google Scholar
  49. 49.
    Morimoto S, Imoto H, Naka K (2017) POSS solid solutions exhibiting orientationally disordered phase transitions. Chem Commun 53:9273–9276CrossRefGoogle Scholar
  50. 50.
    Zakharov AV, Masters SL, Wann DA, Shlykov SA, Girichev GV, Arrowsmith S, Cordes DB, Lickiss PD, White AJP (2010) The gas-phase structure of octaphenyloctasilsesquioxane Si8O12Ph8 and the crystal structures of Si8O12(p-tolyl)8 and Si8O12(p-ClCH2C6H4)8. Dalton Trans 39:6960–6966PubMedCrossRefGoogle Scholar
  51. 51.
    Heeley EL, Hughes DJ, El Aziz Y, Williamson I, Taylor PG, Bassindale AR (2013) Properties and self-assembled packing morphology of long alkyl-chained substituted polyhedral oligomeric silsesquioxanes (POSS) cages. Phys Chem Chem Phys 15:5518–5529PubMedCrossRefGoogle Scholar
  52. 52.
    Bassindale AR, Gentle TE (1993) Siloxane and hydrocarbon octopus molecules with silsesquioxane cores. J Mater Chem 12:1319–1325CrossRefGoogle Scholar
  53. 53.
    Heeley EL, Hughes DJ, El Aziz Y, Taylor PG, Bassindale AR (2013) Linear long alkyl chain substituted POSS cages: the effect of alkyl chain length on the self-assembled packing morphology. Macromolecules 46:4944–4954CrossRefGoogle Scholar
  54. 54.
    Boese R, Weiss H-C, Bläser D (1999) The melting point alternation in the short-chain n-alkanes: single-crystal X-ray analyses of propane at 30 K and of n-butane to n-nonane at 90 K. Angew Chem Int Ed 38:988–992PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Dumitriu AMC, Cazacu M, Bargan A, Balan M, Vornicu N, Varganici C-D, Shova S (2015) Full functionalized silica nanostructure with well-defined size and functionality: Octakis(3-mercaptopropyl)octasilsesquioxane. J Organomet Chem 799–800:195–200CrossRefGoogle Scholar
  56. 56.
    Kowalewska A, Nowacka M, Maniukiewicz W (2016) Octa(3-mercaptopropyl)octasilsesquioxane—a reactive nanocube of unique self-assembled packing morphology. J Organomet Chem 810:15–24CrossRefGoogle Scholar
  57. 57.
    Marciniec B, Dutkiewicz M, Maciejewski H, Kubicki M (2008) New, effective method of synthesis and structural characterization of octakis(3-chloropropyl)octasilsesquioxane. Organometallics 27:793–794CrossRefGoogle Scholar
  58. 58.
    Dumitriu A-M-C, Balan M, Bargan A, Shova S, Varganici C-D, Cazacu M (2016) Synthesis of functionalized silica nanostructure: unexpected conversion of cyanopropyl group in chloropropyl one during HCl-catalysed hydrolysis of the corresponding triethoxysilane. J Molec Struct 1110:150–155CrossRefGoogle Scholar
  59. 59.
    Handke B, Jastrzębski W, Mozgawa W, Kowalewska A (2008) Structural studies of crystalline octamethylsilsesquioxane (CH3)8Si8O12. J Molec Str 887:159–164CrossRefGoogle Scholar
  60. 60.
    Day VW, Klemperer WG, Mainz VV, Millari DM (1985) Molecular building blocks for the synthesis of ceramic materials: [Si8O12](OCH3)8. J Am Chem Soc 107:8262–8264CrossRefGoogle Scholar
  61. 61.
    Provatas A, Luft M, Mu JC, White AH, Matisons JG, Skelton BW (1998) Silsesquioxanes: part I: a key intermediate in the building of molecular composite materials. J Organomet Chem 565:159–164CrossRefGoogle Scholar
  62. 62.
    Xu J, Li X, Cho CM, Toh CL, Shen L, Mya KY, Lu X, He C (2009) Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends. J Mater Chem 19:4740–4745CrossRefGoogle Scholar
  63. 63.
    Janeta M, John Ł, Ejfler J, Szafert S (2015) Novel organic-inorganic hybrids based on T8 and T10 silsesquioxanes: synthesis, cage-rearrangement and properties. RSC Adv 5:72340–72351CrossRefGoogle Scholar
  64. 64.
    Li G, Wang L, Ni H, Pittman CU (2001) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym 11:123–154CrossRefGoogle Scholar
  65. 65.
    Liu H, Puchberger M, Schubert U (2011) A facile route to difunctionalized monosubstituted octasilsesquioxanes. Chem Eur J 17:5019–5023PubMedCrossRefGoogle Scholar
  66. 66.
    Li Y, Dong X-H, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang W-B, Cheng SZD (2017) Polyhedral oligomeric silsesquioxane meets “click” chemistry: rational design and facile preparation of functional hybrid materials. Polymer 125:303–329CrossRefGoogle Scholar
  67. 67.
    Yue K, Liu C, Guo K, Yu X, Huang M, Li H, Wesdemiotis C, Chang SZD, Zhang W-B (2012) Sequential, “click” approach to polyhedral oligomeric silsesquioxane-based shape amphiphiles. Macromolecules 45:8126–8134CrossRefGoogle Scholar
  68. 68.
    Li Y, Dong X-H, Guo K, Wang Z, Chen Z, Wesdemiotis C, Quirk RP, Zhang W-B, Chang SZD (2012) Synthesis of shape amphiphiles based on POSS tethered with two symmetric/asymmetric polymer tails via sequential “grafting-from” and thiol–ene “click” chemistry. ACS Macro Lett 1:834–839CrossRefGoogle Scholar
  69. 69.
    Li Y, Wang Z, Zheng J, Su H, Lin F, Guo K, Feng X, Wesdemiotis C, Becker ML, Cheng SZD, Zhang W-B (2013) Cascading one-pot synthesis of single-tailed and asymmetric multitailed giant surfactants. ACS Macro Lett 2:1026–1032CrossRefGoogle Scholar
  70. 70.
    Wang Z, Li Y, Dong X-H, Yu X, Guo K, Su H, Wesdemiotis C, Cheng SZD, Zhang W-B (2013) Giant gemini surfactants based on polystyrene–hydrophilic polyhedral oligomeric silsesquioxane shape amphiphiles: sequential “click” chemistry and solution self-assembly. Chem Sci 4:1345–1352CrossRefGoogle Scholar
  71. 71.
    Su H, Li Y, Yue K, Wang Z, Lu P, Feng X, Dong X-H, Zhang S, Cheng SZD, Zhang W-B (2014) Macromolecular structure evolution toward giant molecules of complex structure: tandem synthesis of asymmetric giant gemini surfactants. Polym Chem 5:3697–3706CrossRefGoogle Scholar
  72. 72.
    Li Y, Su H, Feng X, Yue K, Wang Z, Lin Z, Zhu X, Fu Q, Zhang Z, Cheng SZD, Zhang W-B (2015) Precision synthesis of macrocyclic giant surfactants tethered with two different polyhedral oligomeric silsesquioxanes at distinct ring locations via four consecutive “click” reactions. Polym Chem 6:827–837CrossRefGoogle Scholar
  73. 73.
    Li Y, Su H, Feng X, Wang Z, Guo K, Wesdemiotis C, Fu Q, Cheng SZD, Zhang W-B (2014) Thiol-Michael “click” chemistry: another efficient tool for head functionalization of giant surfactants. Polym Chem 5:6151–6162CrossRefGoogle Scholar
  74. 74.
    Guo S, Sasaki J, Tsujiuchi S, Hara S, Wada H, Kuroda K, Shimojima A (2017) Role of cubic siloxane cages in mesostructure formation and photoisomerization of azobenzene siloxane hybrid. Chem Lett 46:1237–1239CrossRefGoogle Scholar
  75. 75.
    Shao Y, Yin H, Wang X-M, Han S-Y, Yan X, Xu J, He J, Ni P, Zhang W-B (2016) Mixed [2: 6] hetero-arm star polymers based on Janus POSS with precisely defined arm distribution. Polym Chem 7:2381–2388CrossRefGoogle Scholar
  76. 76.
    Han S-Y, Wang X-M, Shao Y, Guo Q-Y, Li Y, Zhang W-B (2016) Janus POSS Based on Mixed [2:6] Octakis-Adduct Regioisomers. Chem Eur J 22:6397–6403PubMedCrossRefGoogle Scholar
  77. 77.
    Wang X-M, Shao Y, Xu J, Jin X, Shen R-H, Shen D-W, Wang J, Li W, Ni P, Zhang W-B (2017) Precision synthesis and distinct assembly of double-chain giant surfactant regioisomers. Macromolecules 50:3943–3953CrossRefGoogle Scholar
  78. 78.
    De Gennes PG (1992) Soft matter (Nobel lecture). Angew Chem 104:856–859CrossRefGoogle Scholar
  79. 79.
    Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261PubMedCrossRefGoogle Scholar
  80. 80.
    Andrianov KA, Tikhonov VS, Makhneva GP, Chernov GS (1973) Synthesis of polycyclic tetramethyl-tetraphenylcyclooctasilsesquioxane. Bull Acad Sci USSR Div Chem Sci 22:928–928CrossRefGoogle Scholar
  81. 81.
    Asuncion MZ, Ronchi M, Abu-Seir H, Laine RM (2010) Synthesis, functionalization and properties of incompletely condensed “half cube” silsesquioxanes as a potential route to nanoscale Janus particles. C R Chim 13:270–281CrossRefGoogle Scholar
  82. 82.
    Tateyama S, Kakihana Y, Kawakami Y (2010) Cage octaphenylsilsesquioxane from cyclic tetrasiloxanetetraol and its sodium salt. J Organomet Chem 695:898–902CrossRefGoogle Scholar
  83. 83.
    Blázquez-Moraleja A, Pérez-Ojeda ME, Suárez JR, Jimeno ML, Chiara JL (2016) Efficient multi-click approach to well-defined two-faced octasilsesquioxanes: the first perfect Janus nanocube. Chem Commun 52:5792–5795CrossRefGoogle Scholar
  84. 84.
    Oguri N, Egawa Y, Takeda N, Unno M (2016) Janus-cube octasilsesquioxane: facile synthesis and structure elucidation. Angew Chem Int Ed 55:9336–9339CrossRefGoogle Scholar
  85. 85.
    Yandek GR, Moore BM, Ramirez SM, Mabry JM (2012) Effects of peripheral architecture on the properties of aryl polyhedral oligomeric silsesquioxanes. J Phys Chem C 116:16755–16765CrossRefGoogle Scholar
  86. 86.
    Brand R, Lunkenheimer P, Loidl A (2002) Relaxation dynamics in plastic crystals. J Chem Phys 116:10386–10401CrossRefGoogle Scholar
  87. 87.
    Folmer JCW, Withers RL, Welberry TR, Martin JD (2008) Coupled orientational and displacive degrees of freedom in the high-temperature plastic phase of the carbon tetrabromide α–CBr 4. Phys. Rev. B 77:144205–144214CrossRefGoogle Scholar
  88. 88.
    Kopesky ET, McKinely GH, Cohen RE (2004) Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37:8992–9004CrossRefGoogle Scholar
  89. 89.
    Croce G, Carniato F, Milanesio M, Boccaleri E, Paul G, van Beek W, Marchese L (2009) Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study. Phys Chem Chem Phys 11:10087–10094PubMedCrossRefGoogle Scholar
  90. 90.
    Bonhomme C, Tolédano P, Maquet J, Livage J, Bonhomme-Coury L (1997) Studies of octameric vinylsilasesquioxane by carbon-13 and silicon-29 cross polarization magic angle spinning and inversion recovery cross polarization nuclear magnetic resonance spectroscopy. J Chem Soc Dalton Trans 1617–1626Google Scholar
  91. 91.
    Taylor PG, Gelbrich T, Hursthouse MB University of Southampton, Crystal structure report archive 2000.
  92. 92.
    Baidina IA, Podberezskaya NV, Alekseev VI, Martynova TN, Borisov SV, Kanev AN (1980) The crystal structure of vinylsilasesquioxane [C2H3SiO3/2]8. J Struct Chem 20:550–554CrossRefGoogle Scholar
  93. 93.
    Wu J, Wu ZL, Yang H, Zheng Q (2014) Crosslinking of low density polyethylene with octavinyl polyhedral oligomeric silsesquioxane as the crosslinker. RSC Adv 4:44030–44038CrossRefGoogle Scholar
  94. 94.
    Kowalewska A, Nowacka M, Włodarska M, Zgardzińska B, Zaleski R, Oszajca M, Krajenta J, Kaźmierski S (2017) Solid-state dynamics and single-crystal to single-crystal structural transformations in octakis(3-chloropropyl)octasilsesquioxane and octavinyloctasilsesquioxane. Phys Chem Chem Phys 19:27516–27529PubMedCrossRefGoogle Scholar
  95. 95.
    Poliskie GM, Haddad TS, Blanski RL, Gleason KK (2005) Characterization of the phase transitions of ethyl substituted polyhedral oligomeric silsesquioxane. Thermochim Acta 438:116–125CrossRefGoogle Scholar
  96. 96.
    Jalarvo N, Gourdon O, Ehlers G, Tyagi M, Kumar SK, Dobbs KD, Smalley RJ, Guise WE, Ramirez-Cuesta A, Wildgruber C, Crawford MK (2014) Structure and dynamics of octamethyl-POSS nanoparticles. J Phys Chem C 118:5579–5592CrossRefGoogle Scholar
  97. 97.
    Tanaka K, Chujo Y (2013) Unique properties of amphiphilic POSS and their applications. Polymer J 45:247–254CrossRefGoogle Scholar
  98. 98.
    Wang L, Ishida Y, Maeda R, Tokita M, Hayakawa T (2014) Alkylated cage silsesquioxanes: a comprehensive study of thermal properties and self-assembled structure. RSC Adv 4:34981–34986CrossRefGoogle Scholar
  99. 99.
    Wang L, Ishida Y, Maeda R, Tokita M, Horiuchi S, Hayakawa T (2014) Alkylated cage silsesquioxane forming a long-range straight ordered hierarchical lamellar nanostructure. Langmuir 30:9797–9803PubMedCrossRefGoogle Scholar
  100. 100.
    Yu X, Zhong S, Li X, Tu Y, Yang S, Van Horn R, Ni CY, Pochan DJ, Quirk RP, Wesdemiotis C, Zhang W-B, Cheng SZD (2010) A giant surfactant of polystyrene-(carboxylic acid-functionalized polyhedral oligomeric silsesquioxane) amphiphile with highly stretched polystyrene tails in micellar assemblies. J Am Chem Soc 132:16741–16744PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Zhou J, Kieffer J (2008) Molecular dynamics simulations of monofunctionalized polyhedral oligomeric silsesquioxane C6H13(H7Si8O12). J Phys Chem C 112:3473–3481CrossRefGoogle Scholar
  102. 102.
    Takeda M, Kuroiwa K, Mitsuishi M, Matsui J (2015) Self-assembly of amphiphilic POSS anchoring a short organic tail with uniform structure. Chem Lett 44:1560–1562CrossRefGoogle Scholar
  103. 103.
    Zhang W, Chu Y, Mu G, Eghtesadi SA, Liu Y, Zhou Z, Lu X, Kashfipour MA, Lillard RS, Yue K, Liu T, Cheng SZD (2017) Rationally controlling the self-assembly behavior of triarmed POSS–organic hybrid macromolecules: from giant surfactants to macroions. Macromolecules 50:5042–5050CrossRefGoogle Scholar
  104. 104.
    Yue K, Liu C, Huang M, Huang J, Zhou Z, Wu K, Liu H, Lin Z, Shi A-C, Zhang W-B, Cheng SZD (2017) Self-assembled structures of giant surfactants exhibit a remarkable sensitivity on chemical compositions and topologies for tailoring sub-10 nm nanostructures. Macromolecules 50:303–314CrossRefGoogle Scholar
  105. 105.
    Wu K, Huang M, Yue K, Liu C, Lin Z, Liu H, Zhang W, Hsu C-H, Shi A-C, Zhang W-B, Stephen ZD, Cheng SZD (2014) Asymmetric giant “bolaform-like” surfactants: precise synthesis, phase diagram, and crystallization-induced phase separation. Macromolecules 47:4622–4633CrossRefGoogle Scholar
  106. 106.
    Yue K, Huang M, Marson RL, He J, Huang J, Zhou Z, Wang J, Liu C, Yan X, Wu K, Guo Z, Liu H, Zhang W, Ni P, Wesdemiotis C, Zhang W-B, Glotzer SC, Cheng SZD (2016) Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants. PNAS 113:14195–14200PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hsu C-H, Dong X-H, Lin Z, Ni B, Lu P, Jiang Z, Tian D, Shi A-C, Thomas EL, Cheng SZD (2016) Tunable affinity and molecular architecture lead to diverse self-assembled supramolecular structures in thin films. ACS Nano 10:919–929PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Yu C-B, Ren L-J, Wang W (2017) Synthesis and self-assembly of a series of nPOSS-b-PEO block copolymers with varying shape anisotropy. Macromolecules 50:3273–3284CrossRefGoogle Scholar
  109. 109.
    Dong X-H, Ni B, Huang M, Hsu C-H, Chen Z, Lin Z, Zhang W-B, Shi A-C, Cheng SZD (2015) Chain overcrowding induced phase separation and hierarchical structure formation in fluorinated polyhedral oligomeric silsesquioxane (FPOSS)-based giant surfactants. Macromolecules 48:7172–7179CrossRefGoogle Scholar
  110. 110.
    Kettwich SC, Pierson SN, Peloquin AJ, Mabry JM, Iacono ST (2012) Anomalous macromolecular assembly of partially fluorinated polyhedral oligomeric silsesquioxanes. New J Chem 36:941–946CrossRefGoogle Scholar
  111. 111.
    Dong X-H, Ni B, Huang M, Hsu C-H, Bai R, Zhang W-B, Shi A-C, Cheng SZD (2016) Molecular-curvature-induced spontaneous formation of curved and concentric lamellae through nucleation. Angew Chem Int Ed 55:2459–2463CrossRefGoogle Scholar
  112. 112.
    Zhang Z, Xue Y, Zhang P, Müller AHE, Zhang W (2016) Hollow polymeric capsules from POSS-based block copolymer for photodynamic therapy. Macromolecules 49:8440–8448CrossRefGoogle Scholar
  113. 113.
    Shimojima A, Goto R, Atsumi N, Kuroda K (2008) Self-assembly of alkyl-substituted cubic siloxane cages into ordered hybrid materials. Chem Eur J 14:8500–8506PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Liu H, Hsu C-H, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang W-B, Yue K, Cheng SZD (2014) Two-dimensional nanocrystals of molecular Janus particles. J Am Chem Soc 136:10691–10699PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Zhang W, Yuan J, Weiss S, Ye X, Li C, Müller AHE (2011) Telechelic hybrid poly(acrylic acid)s containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water. Macromolecules 44:6891–6898CrossRefGoogle Scholar
  116. 116.
    Li Y, Zhang W-B, Hsieh I-F, Zhang G, Cao Y, Li X, Wesdemiotis C, Lotz B, Xiong H, Cheng SZD (2011) Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: molecular design, “click” synthesis, and hierarchical structure. J Am Chem Soc 133:10712–10715PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Huang M, Hsu C-H, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang W-B, Yue K, Cheng SZD (2015) Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 348:424–428PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Hu M-B, Hou Z-Y, Hao W-Q, Xiao Y, Yu W, Ma C, Ren L-J, Zheng P, Wang W (2013) POM–organic–POSS cocluster: creating a dumbbell-shaped hybrid molecule for programming hierarchical supramolecular nanostructures. Langmuir 29:5714–5722CrossRefGoogle Scholar
  119. 119.
    Ma C, Wu H, Huang Z-H, Guo R-H, Hu M-B, Kîbel C, Yan L-T, Wang W (2015) A filled-honeycomb-structured crystal formed by self-assembly of a Janus polyoxometalate–silsesquioxane (POM–POSS) co-cluster. Angew Chem Int Ed 54:15699–15704CrossRefGoogle Scholar
  120. 120.
    Wu H, Zhang Y-Q, Hu M-B, Ren L-J, Lin Y, Wang W (2017) Creating quasi two-dimensional cluster-assembled materials through self-assembly of a Janus polyoxometalate-silsesquioxane co-cluster. Langmuir 33:5283–5290PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Liu H, Luo J, Shan W, Guo D, Wang J, Hsu C-H, Huang M, Zhang W, Lotz B, Zhang W-B, Liu T, Yue K, Cheng SZD (2016) Manipulation of self-assembled nanostructure dimensions in molecular janus particles. ACS Nano 10:6585–6596PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Lin M-C, Hsu C-H, Sun H-J, Wang C-L, Zhang W-B, Li Y, Chen H-L, Cheng SZD (2014) Crystal structure and molecular packing of an asymmetric giant amphiphile constructed by one C60 and two POSSs. Polymer 55:4514–4520CrossRefGoogle Scholar
  123. 123.
    Zhang C, Leng Y, Jiang P, Lu D (2016) POSS-based meso-/macroporous covalent networks: supporting and stabilizing Pd for Suzuki-Miyaura reaction at room temperature. RSC Adv 6:57183–57189CrossRefGoogle Scholar
  124. 124.
    Liu J, Yu H, Liang Q, Liu Y, Shen J, Bai Q (2017) Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J Colloid Interface Sci 497:402–412CrossRefGoogle Scholar
  125. 125.
    Peng Y, Ben T, Xu J, Xue M, Jing X, Deng F, Qiu S, Zhu G (2011) A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties. Dalton Trans 40:2720–2724PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Wang J, Sun J, Zhou J, Jin K, Fang Q (2017) Fluorinated and thermo-cross-linked polyhedral oligomeric silsesquioxanes: new organic–inorganic hybrid materials for high-performance dielectric application. ACS Appl Mater Interfaces 9:12782–12790PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Chen G, Zhou Y, Wang X, Li J, Xue S, Liu Y, Wang Q, Wang J (2015) Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers. Scientific Reports 5:11236PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Li D, Niu Y, Yang Y, Wang X, Yang F, Shen H, Wu D (2015) Synthesis and self-assembly behavior of POSS-embedded hyperbranched polymers. Chem Commun 51:8296–8299CrossRefGoogle Scholar
  129. 129.
    Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2011) Microstructure and phase behavior of POSS/PCL shape memory nanocomposites. Macromolecules 44:5682–5692CrossRefGoogle Scholar
  130. 130.
    Wang Z, Wang Z, Yu H, Zhao L, Qu J (2012) Controlled network structure and its correlations with physical properties of polycarboxyl octaphenylsilsesquioxanes-based inorganic–organic polymer nanocomposites. RSC Adv 2:2759–2767CrossRefGoogle Scholar
  131. 131.
    Cheng C-C, Yen Y-C, Chang F-C (2011) Self-supporting polymer from a POSS derivative. Macromol Rapid Commun 32:927–932PubMedCrossRefGoogle Scholar
  132. 132.
    Cheng C-C, Yen Y-C, Ko F-H, Chu C-W, Fan S-K, Chang F-C (2012) A new supramolecular film formed from a silsesquioxane derivative for application in proton exchange membranes. J Mater Chem 22:731–734CrossRefGoogle Scholar
  133. 133.
    Voisin D, Flot D, Van der Lee A, Dautel OJ, Moreau JJE (2017) Hydrogen bond-directed assembly of silsesquioxanes cubes: synthesis of carboxylic acid POSS derivatives and the solid state structure of octa[2-(p-carboxyphenyl)ethyl] silsesquioxane. CrystEngComm 19:492–502CrossRefGoogle Scholar
  134. 134.
    Lu Y-S, Yu C-Y, Lin Y-C, Kuo S-W (2016) Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles. Soft Matter 12:2288–2300PubMedCrossRefGoogle Scholar
  135. 135.
    Wu Y-C, Shiao-Wei Kuo S-W (2012) Self-assembly supramolecular structure through complementary multiple hydrogen bonding of heteronucleobase-multifunctionalized polyhedral oligomeric silsesquioxane (POSS) complexes. J Mater Chem 22:2982–2991CrossRefGoogle Scholar
  136. 136.
    Shih R-S, Lu C-H, Kuo S-W, Chang F-C (2010) Hydrogen bond-mediated self-assembly of polyhedral oligomeric silsesquioxane-based supramolecules. J Phys Chem C 114:12855–12862CrossRefGoogle Scholar
  137. 137.
    Wang J-H, Altukhov O, Cheng C-C, Chang F-C, Kuo S-W (2013) Supramolecular structures of uracil-functionalized PEG with multi-diamidopyridine POSS through complementary hydrogen bonding interactions. Soft Matter 9:5196–5206CrossRefGoogle Scholar
  138. 138.
    Lu L, Zhang C, Li L, Zhou C (2013) Reversible pH-responsive aggregates based on the self-assembly of functionalized POSS and hyaluronic acid. Carbohydrate Polym 94:444–448CrossRefGoogle Scholar
  139. 139.
    Yang L, Lu L, Zhang C-W, Zhou C-R (2016) Highly stretchable and self-healing hydrogels based on poly(acrylic acid) and functional POSS. Chin J Polym Sci 34:185–194CrossRefGoogle Scholar
  140. 140.
    Sato N, Kuroda Y, Abe T, Wada H, Shimojima A, Kuroda K (2015) Regular assembly of cage siloxanes by hydrogen bonding of dimethylsilanol groups. Chem Commun 51:11034–11037CrossRefGoogle Scholar
  141. 141.
    Kawahara K, Tachibana H, Hagiwara Y, Kuroda K (2012) A spherosilicate oligomer with eight stable silanol groups as a building block of hybrid materials. New J Chem 36:1210–1217CrossRefGoogle Scholar
  142. 142.
    Kawakami Y, Sakuma Y, Wakuda T, Nakai T, Shirasaka M, Kabe Y (2010) Hydrogen-bonding 3D networks by polyhedral organosilanols: selective inclusion of hydrocarbons in open frameworks. Organometallics 29:3281–3288CrossRefGoogle Scholar
  143. 143.
    Farha OK, Hupp JT (2010) Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc Chem Res 43:1166–1175PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Meek ST, Greathouse JA, Allendorf MD (2011) Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater 23:249–267PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y (2014) Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 43:6011–6061PubMedCrossRefGoogle Scholar
  147. 147.
    Cui YJ, Li B, He HJ, Zhou W, Chen BL, Qian GD (2016) Metal-organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493PubMedCrossRefGoogle Scholar
  148. 148.
    Banerjee S, Kataoka S, Takahashi T, Kamimura Y, Suzuki K, Sato K, Endo A (2016) Controlled formation of ordered coordination polymeric networks using silsesquioxane building blocks. Dalton Trans 45:17082–17086CrossRefGoogle Scholar
  149. 149.
    Köytepe S, Demirel MH, Gültek A, Seçkin T (2014) Metallo-supramolecular materials based on terpyridine-functionalized polyhedral silsesquioxane. Polym Int 63:778–787CrossRefGoogle Scholar
  150. 150.
    Carbonell E, Bivona LA, Fusaro L, Aprile C (2017) Silsesquioxane–terpyridine nano building blocks for the design of three-dimensional polymeric networks. Inorg Chem 56:6393–6403PubMedCrossRefGoogle Scholar
  151. 151.
    Dang S, Zhu QL, Xu Q (2017) Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3, Article no. 17075CrossRefGoogle Scholar
  152. 152.
    Sanil ES, Cho K-H, Hong D-Y, Lee JS, Lee S-K, Ryu SG, Lee HW, Chang J-S, Hwang YK (2015) A polyhedral oligomeric silsesquioxane functionalized copper trimesate. Chem Commun 51:8418–8420CrossRefGoogle Scholar
  153. 153.
    Chan MHY, Ng M, Leung SYL, Lam WH, Yam VWW (2017) Synthesis of luminescent platinum(II) 2,6-bis-(N-dodecylbenzimidazol-2 ‘-yl)pyridine foldamers and their supramolecular assembly and metallogel formation. J Am Chem Soc 139:8639–8645PubMedCrossRefGoogle Scholar
  154. 154.
    Zhang SL, Luo KJ, Geng H, Ni HL, Wang HF, Li Q (2017) New phosphorescent platinum(II) complexes with tetradentate CNNC ligands: liquid crystallinity and polarized emission. Dalton Trans 46:899–906PubMedCrossRefGoogle Scholar
  155. 155.
    Chico R, de Domingo E, Dominguez C, Donnio B, Heinrich B, Termine R, Golemme A, Coco S, Espinet P (2017) High one-dimensional charge mobility in semiconducting columnar mesophases of isocyano-triphenylene metal complexes. Chem Mater 29:7587–7595CrossRefGoogle Scholar
  156. 156.
    Au-Yeung H-L, Leung SY-L, Tam AYY, Yam VW-W (2014) Transformable nanostructures of platinum-containing organosilane hybrids: non-covalent self-assembly of polyhedral oligomeric silsesquioxanes assisted by Pt···Pt and ππ stacking interactions of alkynylplatinum(II) terpyridine moieties. J Am Chem Soc 136:17910–17913PubMedCrossRefGoogle Scholar
  157. 157.
    Au-Yeung H-L, Tam AYY, Leung SY-L, Yam VW-W (2017) Supramolecular assembly of platinum-containing polyhedral oligomeric silsesquioxanes: an interplay of intermolecular interactions and a correlation between structural modifications and morphological transformations. Chem Sci 8:2267–2276PubMedCrossRefGoogle Scholar
  158. 158.
    Li L, Feng S, Liu H (2014) Hybrid lanthanide complexes based on a novel β-diketone functionalized polyhedral oligomeric silsesquioxane (POSS) and their nanocomposites with PMMA via in situ polymerization. RSC Adv 4:39132–39139CrossRefGoogle Scholar
  159. 159.
    Xu Q, Li Z, Chen M, Li H (2016) Synthesis and luminescence of octacarboxy cubic polyhedral oligosilsesquioxanes coordinated with terbium. CrystEngComm 18:177–182CrossRefGoogle Scholar
  160. 160.
    Naka K, Chujo Y (2009) Nanohybridized synthesis of metal nanoparticles and their organization. In: Muramatsu A, Miyashita T (eds) Nanohybridization of organic-inorganic materials, vol XVI. Springer, Berlin, p 191CrossRefGoogle Scholar
  161. 161.
    Kuo S-W, Wu Y-C, Lu C-H., Chang F-C (2009) Surface modification of gold nanoparticles with polyhedral oligomeric silsesquioxane and incorporation within polymer matrices. J Polym Sci Part B Poly Phys 47:811–819CrossRefGoogle Scholar
  162. 162.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Naka K, Itoh H, Chujo Y (2004) Preparation of gold nanoparticles protected by a cubic silsesquioxane and their monolayer formation on a glass substrate. Bull Chem Soc Jpn 77:1767–1771CrossRefGoogle Scholar
  164. 164.
    Imoto H, Ishida K, Sasaki A, Irie Y, Ito H, Naka K, Chujo Y (2015) Spontaneous formation of gold nanoparticles with octa(3-aminopropyl) polyhedral oligomeric silsesquioxane. Bull Chem Soc Jpn 88:653–656CrossRefGoogle Scholar
  165. 165.
    Imoto H, Shigeyoshi S, Naka K (2015) Surface modification and aggregation control of gold nanoparticles via multifunctional stabilizer based on polyhedral oligomeric silsesquioxane. Bull Chem Sci Jpn 88:693–697CrossRefGoogle Scholar
  166. 166.
    Wang X, Naka K, Itoh H, Chujo Y (2004) Self-organized nanocomposites of functionalized gold nanoparticles with octa(3-aminopropyl)octasilsesquioxane. Chem Lett 33:216–217CrossRefGoogle Scholar
  167. 167.
    Carroll JB, Frankamp BL, Srivastava S, Rotello VM (2004) Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. J Mater Chem 14:690–694CrossRefGoogle Scholar
  168. 168.
    Bai W, Sheng Q, Ma X, Zheng J (2015) Synthesis of silver nanoparticles based on hydrophobic interface regulation and its application of electrochemical catalysis. ACS Sustain Chem Eng 3:1600–1609CrossRefGoogle Scholar
  169. 169.
    Létant SE, Maiti A, Jones TV, Herberg JL, Maxwell RS, Saab AP (2009) Polyhedral oligomeric silsesquioxane (POSS)-stabilized Pd nanoparticles: factors governing crystallite morphology and secondary aggregate structure. J Phys Chem C 113:19424–19431CrossRefGoogle Scholar
  170. 170.
    Naka K, Itoh H, Chujo Y (2002) Self-organization of spherical aggregates of palladium nanoparticles with a cubic silsesquioxane. Nano Lett 2:1183–1186CrossRefGoogle Scholar
  171. 171.
    Naka K, Sato M, Chujo Y (2008) Stabilized spherical aggregate of palladium nanoparticles prepared by reduction of palladium acetate in octa(3-aminopropyl)octasilsesquioxane as a rigid template. Langmuir 24:2719–2726PubMedCrossRefGoogle Scholar
  172. 172.
    Wang X, Naka K, Zhu M, Itoh H, Chujo Y (2005) Microporous nanocomposites of Pd and Au nanoparticles via hierarchical self-assembly. Langmuir 21:12395–12398PubMedCrossRefGoogle Scholar
  173. 173.
    Chen T, Ge C, Zhang Y, Zhao Q, Hao F, Bao N (2015) Bimetallic platinum-bismuth nanoparticles prepared with silsesquioxane for enhanced electrooxidation of formic acid. Int J Hydrogen Energy 40:4548–4557CrossRefGoogle Scholar
  174. 174.
    Lu C-H, Kuo S-W, Huang C-F, Chang F-C (2009) Self-assembled fernlike microstructures of polyhedral oligomeric silsesquioxane/gold nanoparticle hybrids. J Phys Chem C 113:3517–3524CrossRefGoogle Scholar
  175. 175.
    Lu C-H, Chang F-C (2011) Polyhedral oligomeric silsesquioxane-encapsulating amorphous palladium nanoclusters as catalysts for Heck reactions. ACS Catal 1:481–488CrossRefGoogle Scholar
  176. 176.
    Carroll JB, Frankamp BL, Rotello VM (2002) Self-assembly of gold nanoparticles through tandem hydrogen bonding and polyoligosilsequioxane (POSS)–POSS recognition processes. Chem Commun 1892–1893Google Scholar
  177. 177.
    Jeoung E, Carroll JB, Rotello VM (2002) Surface modification via ‘lock and key’ specific self-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified gold surfaces. Chem Commun, 1510–1511Google Scholar
  178. 178.
    Cai J, Chao L, Watanabe, A (2015) Facile preparation of hierarchical structures using crystallization-kinetics driven self-assembly. ACS Appl Mater Interfaces 18697–18706CrossRefGoogle Scholar
  179. 179.
    Ledin PA, Russell M, Geldmeier JA, Tkachenko IM, Mahmoud MA, Shevchenko V, El-Sayed MA, Tsukruk VV (2015) Light-responsive plasmonic arrays consisting of silver nanocubes and a photoisomerizable matrix. ACS Appl Mater Interfaces 7:4902–4912PubMedCrossRefGoogle Scholar
  180. 180.
    Ye X, Gong J, Wang Z, Zhang Z, Han S, Jiang X (2013) Hybrid POSS-containing brush on gold surfaces for protein resistance. Macromol Biosci 13:921–926PubMedCrossRefGoogle Scholar
  181. 181.
    Wang F, Phonthammachai N, Mya KY, Tjiu WW, He C (2011) PEG-POSS Assisted facile preparation of amphiphilic gold nanoparticles and interface formation of Janus nanoparticles. Chem Commun 47:767–769CrossRefGoogle Scholar
  182. 182.
    Zhang X, Hu Y, Liu R, Sun J, Fang S (2015) Thermosensitive gold nanoparticles based on star-shaped poly(N-isopropylacrylamide) with a cubic silsesquioxane core. Macromol Res 23:227–230CrossRefGoogle Scholar
  183. 183.
    Mohapatra S, Chaiprasert T, Sodkhomkhum R, Kunthom R, Hanprasit S, Sangtrirutnugul P, Ervithayasuporn V (2016) Solid–state synthesis of polyhedral oligomeric silsesquioxane-supported N-heterocyclic carbenes/imidazolium salts on palladium nanoparticles: highly active and recyclable catalyst. ChemistrySelect 1:5353–5357CrossRefGoogle Scholar
  184. 184.
    Frankamp BL, Fischer NO, Hong R, Srivastava S, Rotello VM (2006) Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoparticles. Chem Mater 18:956–959CrossRefGoogle Scholar
  185. 185.
    Etgar L, Lifshitz E, Tannenbaum R (2007) Hierarchical conjugate structure of γ-Fe2O3 nanoparticles and PbSe quantum dots for biological applications. J Phys Chem C 111:6238–6244CrossRefGoogle Scholar
  186. 186.
    Yuan W, Shen J, Lia L, Liu X, Zou H (2014) Preparation of POSS-poly(ε-caprolactone)-β-cyclodextrin/Fe3O4 hybrid magnetic micelles for removal of bisphenol A from water. Carbohyd Polym 113:353–361CrossRefGoogle Scholar
  187. 187.
    Safaei-Ghomi J, Nazemzadeh SH, Shahbazi-Alavi H (2016) Novel magnetic nanoparticles-supported inorganic-organic hybrids based on POSS as an efficient nanomagnetic catalyst for the synthesis of pyran derivatives. Catalysis Comm 86:14–18CrossRefGoogle Scholar
  188. 188.
    Evans CM, Cass LC, Knowles KE, Tice DB, Chang RPH, Weiss EA (2012) Review of the synthesis and properties of colloidal quantum dots: the evolving role of coordinating surface ligands. J Coordination Chem 65:2391–2414CrossRefGoogle Scholar
  189. 189.
    Wang Y, Vaneski A, Yang H, Gupta S, Hetsch F, Kershaw SV, Teoh WY, Li H, Rogach AL (2013) Polyhedral oligomeric silsesquioxane as a ligand for CdSe quantum dots. J Phys Chem C 117:1857–1862CrossRefGoogle Scholar
  190. 190.
    Rizvi SB, Yildirimer L, Ghaderi S, Ramesh B, Seifalian AM, Keshtgar M (2012) A novel POSS-coated quantum dot for biological application. Int J Nanomed 7:3915–3927Google Scholar
  191. 191.
    He Y, Wang H-F, Yan X-P (2009) Self-assembly of Mn-doped ZnS quantum dots/octa(3-aminopropyl)octasilsequioxane octahydrochloride nanohybrids for optosensing DNA. Chem Eur J 15:5436–5440PubMedCrossRefGoogle Scholar
  192. 192.
    Zhao X, Ma R, Yang M, Yang H, Jin P, Li Z, Fan Y, Du A, Cao X (2017) Fabrication of POSS-coated CdTe quantum dots sensitized solar cells with enhanced photovoltaic properties. J Alloys Comp 726:593–600CrossRefGoogle Scholar
  193. 193.
    Park Y, Yoo J, Lim B, Kwon W, Rhee S-W (2016) Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A 4:11582–11603CrossRefGoogle Scholar
  194. 194.
    Wang D, Liu J, Chen J-F, Dai L (2015) Surface functionalization of carbon dots with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. Adv Mater Interfaces 3:1500439CrossRefGoogle Scholar
  195. 195.
    Wang W-J, Hai X, Mao Q-X, Chen M-L, Wang J-H (2015) Polyhedral oligomeric silsesquioxane functionalized carbon dots for cell imaging. ACS Appl Mater Interfaces 7:16609–16616PubMedCrossRefGoogle Scholar
  196. 196.
    Wang Y, Kalytchuk S, Wang L, Zhovtiuk O, Cepe K, Zboril R, Rogach AL (2015) Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chem Commun 51:2950–2953CrossRefGoogle Scholar
  197. 197.
    Potsi G, Rossos A, Kouloumpis A, Antoniou MK, Spyrou K, Karakassides MA, Gournis D, Rudolf P (2016) Carbon nanostructures containing polyhedral oligomeric silsesquioxanes (POSS). Curr Org Chem 20:662–673CrossRefGoogle Scholar
  198. 198.
    Inagaki M, Toyoda M, Soneda Y, Tsujimura S, Morishita T (2016) Templated mesoporous carbons: synthesis and applications. Carbon 107:448–473CrossRefGoogle Scholar
  199. 199.
    Kong J, Wei Y, Lu X, He C (2017) Cross-linking SixOy cages with carbon by thermally annealing polyhedral oligomeric silsesquioxane: structures, morphology, and electrochemical properties as lithium-ion battery anodes. ChemElectroChem 4:49–55CrossRefGoogle Scholar
  200. 200.
    Li Z, Wu D, Liang Y, Fu R, Matyjaszewski K (2014) Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J Am Chem Soc 136:4805–4808PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Li Z, Li Z, Zhong W, Li C, Li L, Zhang H (2017) Facile synthesis of ultra-small Si particles embedded in carbon framework using Si-carbon integration strategy with superior lithium ion storage performance. Chem Eng J 319:1–8CrossRefGoogle Scholar
  202. 202.
    Li Z, Li Z, Li L, Li C, Zhong W, Zhang H (2017) Construction of hierarchically one-dimensional core–shell CNT@microporous carbon by covalent bond-induced surface-confined cross-linking for high-performance supercapacitor. ACS Appl Mater Interfaces 9:15557–15565PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Liu D, Cheng G, Zhao H, Zeng C, Qu D, Xiao L, Tang H, Deng Z, Li Y, Su B-L (2016) Self-assembly of polyhedral oligosilsesquioxane (POSS) into hierarchically ordered mesoporous carbons with uniform microporosity and nitrogen-doping for high performance supercapacitors. Nano Energy 22:255–268CrossRefGoogle Scholar
  204. 204.
    Ren Z, Yan S (2016) Polysiloxanes for optoelectronic applications. Progr Mater Sci 83:383–416CrossRefGoogle Scholar
  205. 205.
    Li Z, Kong J, Wang F, He C (2017) Polyhedral oligomeric silsesquioxanes (POSSs): an important building block for organic optoelectronic materials. J Mater Chem C 5:5283–5298CrossRefGoogle Scholar
  206. 206.
    Leu C-M, Chang Y-T, Wei K-H (2003) Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chem Mater 15:3721–3727CrossRefGoogle Scholar
  207. 207.
    Chen Y, Kang E-T (2014) New approach to nanocomposites of polyimides containing polyhedral oligomeric silsesquioxane for dielectric applications. Mater Lett 58:3716–3719CrossRefGoogle Scholar
  208. 208.
    Ben H-J, Ren X-K, Song B, Li X, Feng Y, Jiang W, Chen E-C, Wang Z, Jiang S (2017) Synthesis, crystal structure, enhanced photoluminescence properties and fluoride detection ability of S-heterocyclic annulated perylene diimide-polyhedral oligosilsesquioxane dye. J Mater Chem C 5:2566–2576CrossRefGoogle Scholar
  209. 209.
    Vinnik FM (1993) Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem Rev 93:587–614Google Scholar
  210. 210.
    Figueira-Duarte TM, Müllen K (2011) Chem Rev 111:7260–7314PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Bains G, Patel AB, Narayanaswami V (2011) Molecules 16:7909–7935PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Lin TT, He C, Xiao Y (2003) Theoretical studies of monosubstituted and higher phenyl-substituted octahydrosilsesquioxanes. J Phys Chem B 107:13788–13792CrossRefGoogle Scholar
  213. 213.
    Chu Y-L, Cheng C-C, Chen Y-P, Yen Y-C, Chang F-C (2012) A new supramolecular POSS electroluminescent material. J Mater Chem 22:9285–9292CrossRefGoogle Scholar
  214. 214.
    Cheng C-C, Chu Y-L, Chu C-W, Lee D-J (2016) Highly efficient organic–inorganic electroluminescence materials for solution processed blue organic light-emitting diodes. J Mater Chem C 4:6461–6465CrossRefGoogle Scholar
  215. 215.
    Bai H, Li C, Shi G (2008) Pyrenyl excimers induced by the crystallization of POSS moieties: spectroscopic studies and sensing applications. ChemPhysChem 9:1908–1913PubMedPubMedCentralGoogle Scholar
  216. 216.
    Gao Y, Xu W, Zhu D, Chen L, Fu Y, He Q, Cao H, Cheng J (2015) Highly efficient nitrate ester explosive vapor probe based on multiple triphenylaminopyrenyl substituted POSS. J Mater Chem A 3:4820–4826CrossRefGoogle Scholar
  217. 217.
    Lu C-H, Tsai C-H, Chang F-C, Jeong K-U, Kuo S-W (2011) Self-assembly behavior and photoluminescence property of bispyrenyl-POSS nanoparticle hybrid. J Colloid Interf Sci 358:93–101CrossRefGoogle Scholar
  218. 218.
    Yang XH, Giovenzana T, Feild B, Jabbour GE (2012) Sellinger, A Solution processeable organic–inorganic hybrids based on pyrene functionalized mixed cubic silsesquioxanes as emitters in OLEDs. J Mater Chem 22:12689–12694CrossRefGoogle Scholar
  219. 219.
    Chanmungkalakul S, Ervithayasuporn V, Hanprasit S, Masik M, Prigyai N, Kiatkamjornwong S (2017) Silsesquioxane cages as fluoride sensors. Chem Commun 53:12108–12111CrossRefGoogle Scholar
  220. 220.
    Bassindale AR, Pourny M, Taylor PG, Hursthouse MB, Light ME (2003) Fluoride-Ion encapsulation within a silsesquioxane cage. Angew Chem Int Ed 42:3488–3490PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Pappalardo RR, Marcos ES, Lopez-Ruiz MF (1993) Solvent effects on molecular geometries and isomerization processes: a study of push-pull ethylenes in solution. J Am Chem Soc 115:3722–3730CrossRefGoogle Scholar
  222. 222.
    Clarke D, Mathew S, Matisons J, Simon G, Skelton BW (2011) Synthesis and characterization of a range of POSS imides. Dyes Pigm 92:659–667CrossRefGoogle Scholar
  223. 223.
    Ren X, Sun B, Tsai C-C, Tu Y, Leng S, Li K, Kang Z, Van Horn RM, Li X, Zhu M, Wesdemiotis C, Zhang W-B, Cheng SZD (2010) Synthesis, self-assembly, and crystal structure of a shape-persistent polyhedral-oligosilsesquioxane-nanoparticle-tethered perylene diimide. J Phys Chem B 114:4802–4810CrossRefGoogle Scholar
  224. 224.
    Zhang Y, Zhang L, Liu H, Sun D, Li X (2015) Synthesis and aggregation properties of a series of dumbbell polyhedral oligosilsesquioxane-perylene diimide triads. CrystEngComm 17:1453–1463CrossRefGoogle Scholar
  225. 225.
    Lucenti E, Botta C, Cariati E, Righetto S, Scarpellini M, Tordin E, Ugo R (2013) New organic-inorganic hybrid materials based on perylene diimide-polyhedral oligomeric silsesquioxane dyes with reduced quenching of the emission in the solid state. Dyes Pigm 96:748–755CrossRefGoogle Scholar
  226. 226.
    Du F, Tian J, Wang H, Liu B, Jin B, Bai R (2012) Synthesis and luminescence of POSS-containing perylene bisimide-bridged amphiphilic polymers. Macromolecules 45:3086–3093CrossRefGoogle Scholar
  227. 227.
    Matsumoto K, Nishi K, Ando K, Jikei M (2015) Synthesis and properties of aromatic polyamide dendrimers with polyhedral oligomeric silsesquioxane cores. Polym Chem 6:4758–4765CrossRefGoogle Scholar
  228. 228.
    Mehl GH, Saez IM (1999) Polyhedral liquid crystal silsesquioxanes. Appl Organometal Chem 13:261–272CrossRefGoogle Scholar
  229. 229.
    Saez IM, Goodby JW (2001) Chiral nematic octasilsesquioxanes. J Mater Chem 11:2845–2851CrossRefGoogle Scholar
  230. 230.
    Haxton KJ, Morris RE (2009) Polyhedral oligomeric silsesquioxane dendrimers in silicon-containing dendritic polymers. In: Dvornic PR, Owen MJ (eds) Advances in silicon science. Springer Science + Business Media B.V., Berlin, pp 121–139Google Scholar
  231. 231.
    Saez IM, Goodby JW (2008) Supermolecular liquid crystals. In: Kato T (ed) Structure and bonding (Series Editor: Mingos DMP) liquid crystalline functional assemblies and their supramolecular structures, vol 128. Springer, Berlin, pp 1–62Google Scholar
  232. 232.
    Zhang C, Bunning TJ, Laine RM (2001) Synthesis and characterization of liquid crystalline silsesquioxanes. Chem Mater 13:3653–3662CrossRefGoogle Scholar
  233. 233.
    Shibaev V, Boiko N (2009) Liquid crystalline silicon-containing dendrimers with terminal mesogenic groups. In: Dvornic PR, Owen MJ (eds) Advances in silicon science. Springer Science + Business Media B.V., Berlin, pp 237–283Google Scholar
  234. 234.
    Mehl GH, Goodby JW (1996) Liquid-crystalline, substituted octakis-(dimethylsiloxy)octasilsesquioxanes: oligomeric supermolecular materials with defined topology. Angew Chem Int Ed Eng 35:2641–2643CrossRefGoogle Scholar
  235. 235.
    Saez IM, Goodby JW, Richardson RM (2001) A liquid-crystalline silsesquioxane dendrimer exhibiting chiral nematic and columnar mesophases. Chem Eur J 7:2758–2764PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Keith C, Dantlgraber G, Reddy RA, Baumeister U, Prehm M, Hahn H, Lang H, Tschierske C (2007) The influence of shape and size of silyl units on the properties of bent-core liquid crystals—from dimers via oligomers and dendrimers to polymers. J Mater Chem 17:3796–3805CrossRefGoogle Scholar
  237. 237.
    Pan Q, Chen X, Fan X, Shen Z, Zhou Q (2008) Organic–inorganic hybrid bent-core liquid crystals with cubic silsesquioxane cores. J Mater Chem 18:3481–3488CrossRefGoogle Scholar
  238. 238.
    Białecka-Florjańczyk E, Sołtysiak JT (2010) Liquid crystalline silicon-containing oligomers. J Organomet Chem 695:1911–1917CrossRefGoogle Scholar
  239. 239.
    Chiang I-H, Chuang W-T, Lu C-L, Lee M-T, Lin H-C (2015) Shape and confinement effects of various terminal siloxane groups on supramolecular interactions of hydrogen-bonded bent-core liquid crystals. Chem Mater 27:4525–4537CrossRefGoogle Scholar
  240. 240.
    Pan Q, Gao L, Chen X, Fan X, Zhou Q (2007) Star mesogen-jacketed liquid crystalline polymers with silsesquioxane core: synthesis and characterization. Macromolecules 40:4887–4894CrossRefGoogle Scholar
  241. 241.
    Wang X, Cho CM, Say WY, Tan AYX, He C, Chan HSO, Xu J (2011) Organic–inorganic hybrid liquid crystals derived from octameric silsesquioxanes. Effect of the peripheral groups in mesogens on the formation of liquid crystals. J Mater Chem 21:5248–5257CrossRefGoogle Scholar
  242. 242.
    Saez IM, Goodby JW (1999) Supermolecular liquid crystal dendrimers based on the octasilsesquioxane core. Liq Cryst 26:1101–1105CrossRefGoogle Scholar
  243. 243.
    Karahaliou PK, Kouwer PHJ, Meyer T, Mehl GH, Photinos DJ (2008) Long- and short-range order in the mesophases of laterally substituted calamitic mesogens and their radial octapodes. J Phys Chem B 112:6550–6556PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Kim D-Y, Kim S, Lee S-A, Choi Y-E, Yoon W-J, Kuo S-W, Hsu C-H, Huang M, Lee SH, Jeong K-U (2014) Asymmetric organic–inorganic hybrid giant molecule: cyanobiphenyl monosubstituted polyhedral oligomeric silsesquioxane nanoparticles for vertical alignment of liquid crystals. J Phys Chem C 118:6300–6306CrossRefGoogle Scholar
  245. 245.
    Kim N, Kim D-Y, Park M, Choi Y-J, Kim S, Lee SH, Jeong K-U (2015) Asymmetric organic–inorganic hybrid giant molecule: hierarchical smectic phase induced from POSS nanoparticles by addition of nematic liquid crystals. J Phys Chem C 119:766–774CrossRefGoogle Scholar
  246. 246.
    Miniewicz A, Girones J, Karpinski P, Mossety-Leszczak B, Galina H, Dutkiewicz M (2014) Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. J Mater Chem C 2:432–440CrossRefGoogle Scholar
  247. 247.
    Liu H-S, Jeng S-C (2013) Liquid crystal alignment by polyhedral oligomeric silsesquioxane (POSS)–polyimide nanocomposites. Opt Mater 35:1418–1421CrossRefGoogle Scholar
  248. 248.
    Hou P-P, Gu K-H, Zhu Y-F, Zhang Z-Y, Wang Q, Pan H-B, Yang S, Shen Z, Fan X-H (2015) Synthesis and sub-10 nm supramolecular selfassembly of a nanohybrid with a polynorbornene main chain and side-chain POSS moieties. RSC Adv 5:70163–70171CrossRefGoogle Scholar
  249. 249.
    Zhu Y-F, Liu W, Zhang M-Y, Zhou Y, Zhang Y-D, Hou P-P, Pan Y, Shen Z, Fan X-H, Zhou Q-F (2015) POSS-containing jacketed polymer: hybrid inclusion complex with hierarchically ordered structures at sub-10 nm and Angstrom length scales. Macromolecules 48:2358–2366CrossRefGoogle Scholar
  250. 250.
    Mehl GH, Thornton AJ, Goodby JW (1999) Oligomers and dendrimers based on siloxane and silsesquioxane cores: does the structure of the central core affect the liquid-crystalline properties? Mol Cryst Liquid Cryst Sci Technol Sect A. Mol Cryst Liquid Cryst 332:455–461CrossRefGoogle Scholar
  251. 251.
    Wang G, Xiong Y, Tang H (2015) Synthesis and characterisation of star-shaped liquid crystalline polymer with a POSS core. Liquid Cryst 42:1280–1289CrossRefGoogle Scholar
  252. 252.
    Miao J, Zhu L (2010) Topology controlled supramolecular self-assembly of octa triphenylene-substituted polyhedral oligomeric silsesquioxane hybrid supermolecules. J Phys Chem B 114:1879–1887PubMedCrossRefGoogle Scholar
  253. 253.
    Cui L, Collet JP, Xu G, Zhu L (2006) Supramolecular self-assembly in a disk-cube dyad molecule based on triphenylene and polyhedral oligomeric silsesquioxane (POSS). Chem Mater 18:3503–3512CrossRefGoogle Scholar
  254. 254.
    Xiang K, He L, Li Y, Xu C, Li S (2015) Dendritic AIE-active luminogens with a POSS core: synthesis, characterization, and application as chemosensors. RSC Adv 5:97224–97230CrossRefGoogle Scholar
  255. 255.
    Zuo Y, Wang X, Yang Y, Huang D, Yang F, Shen H, Wu D (2016) Facile preparation of pH-responsive AIE-active POSS dendrimers for the detection of trivalent metal cations and acid gases. Polym Chem 7:6432–6436CrossRefGoogle Scholar
  256. 256.
    Zhou H, Li J, Chua MH, Yan H, Ye Q, Song J, Lin TT, Tang BZ, Xu J (2016) Tetraphenylethene (TPE) modified polyhedral oligomeric silsesquioxanes (POSS): unadulterated monomer emission, aggregation-induced emission and nanostructural self-assembly modulated by the flexible spacer between POSS and TPE. Chem Commun 52:12478–12481CrossRefGoogle Scholar
  257. 257.
    Zhang M-Y, Zhou S, Pan H-B, Ping J, Zhang W, Fan X-H, Shen Z (2017) Structural complexity induced by topology change in hybrids consisting of hexa-perihexabenzocoronene and polyhedral oligomeric silsesquioxane. Chem Commun 53:8679–8682CrossRefGoogle Scholar
  258. 258.
    Zhang M-Y, Gu K-H, Zhou Y, Zhou S, Fan X-H, Shen Z (2016) The synthesis and self-assembly of disc-cube dyads with spacers of different lengths. Chem Commun 52:3923–3926CrossRefGoogle Scholar
  259. 259.
    Tan J, Ma D, Sun X, Feng S, Zhang C (2013) Synthesis and characterization of an octaimidazolium based polyhedral oligomeric silsesquioxanes ionic liquid by an ion-exchange reaction. Dalton Trans 42:4337–4339PubMedCrossRefGoogle Scholar
  260. 260.
    Tanaka K, Ishiguro F, Jeon J-H, Hiraoka T, Chujo Y (2015) POSS ionic liquid crystals. NPG Asia Mater 7:e174CrossRefGoogle Scholar
  261. 261.
    Tanaka K, Ishiguro F, Chujo Y (2010) POSS ionic liquid. J Am Chem Soc 132:17649–17651PubMedCrossRefGoogle Scholar
  262. 262.
    Gon M, Tanaka K, Chujo Y (2017) Creative synthesis of organic-inorganic molecular hybrid materials. Bull Chem Soc Jpn 90:463–474CrossRefGoogle Scholar
  263. 263.
    Zhou J, Yin P, Hu L, Haso F, Liu T (2014) Self-assembly of subnanometer-scaled polyhedral oligomeric silsesquioxane (POSS) macroions in ddilute solution. Eur J Inorg Chem 4593–4599CrossRefGoogle Scholar
  264. 264.
    Zhang W, Wang Z-S (2014) Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells. ACS Appl Mater Interfaces 6:10714–10721PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Lee JH, Lee AS, Lee J-C, Hong SM, Hwang SS, Koo CM (2017) Multifunctional mesoporous ionic gels and scaffolds derived from polyhedral oligomeric silsesquioxanes. ACS Appl Mater Interfaces 9:3616–3623PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Yuan G, Wang X, Wu D, Hammouda B (2016) Structural analysis of dendrimers based on polyhedral oligomeric silsesquioxane and their assemblies in solution by small-angle neutron scattering: fits to a modified two correlation lengths model. Polymer 100:119–125CrossRefGoogle Scholar
  267. 267.
    Bai Y, Yang L, Toh CL, He C, Lu X (2013) Temperature and pH dual-responsive behavior of dendritic poly(N-isopropylacrylamide) with a polyoligomeric silsesquioxane core and poly(2-hydroxyethyl methacrylate) shell. Macromol Chem Phys 214:396–404CrossRefGoogle Scholar
  268. 268.
    Naka K, Masuoka S, Shinke R, Yamada M (2012) Synthesis of first- and second-generation imidazole terminated POSS-core dendrimers and their pH responsive and coordination properties. Polym J 44:353–359CrossRefGoogle Scholar
  269. 269.
    Naka K, Shinke R, Yamada M, Belkada FD, Aijo Y, Irie Y, Shankar SR, Smaran KS, Matsumi N, Tomita S, Sakurai S (2014) Synthesis of imidazolium salt-terminated poly(amidoamine)-typed POSS-core dendrimers and their solution and bulk properties. Polym J 46:42–51CrossRefGoogle Scholar
  270. 270.
    Li L, Liu H (2016) Rapid preparation of silsesquioxane-based ionic liquids. Chem Eur J 22:4713–4716PubMedCrossRefGoogle Scholar
  271. 271.
    Han J, Zheng Y, Zheng S, Li S, Hu T, Tang A, Gao C (2014) Water soluble octa-functionalized POSS: all-click chemistry synthesis and efficient host–guest encapsulation. Chem Commun 50:8712–8714CrossRefGoogle Scholar
  272. 272.
    Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32:1032–1046CrossRefGoogle Scholar
  273. 273.
    Fabritz S, Hörner S, Avrutina O, Kolmar H (2013) Bioconjugation on cube-octameric silsesquioxanes. Org Biomol Chem 11:2224–2236PubMedCrossRefGoogle Scholar
  274. 274.
    Hörner S, Fabritz S, Herce HD, Avrutina O, Dietz C, Stark RW, Cardosoc M, Kolmar H (2013) Cube-octameric silsesquioxane-mediated cargo peptide delivery into living cancer cells. Org Biomol Chem 11:2258–2265PubMedCrossRefGoogle Scholar
  275. 275.
    Mori H, Saito S (2011) Smart organic–inorganic hybrids based on the complexation of amino acid-based polymers and water-soluble silsesquioxane nanoparticles. React Funct Polym 71:1023–1032CrossRefGoogle Scholar
  276. 276.
    Mori H, Saito S, Shoji K (2011) Complexation of amino-acid-based block copolymers with dual thermoresponsive properties and water-soluble silsesquioxane nanoparticles. Macromol Chem Phys 212:2558–2572CrossRefGoogle Scholar
  277. 277.
    Lin Y-C, Kuo S-W (2012) Hierarchical self-assembly structures of POSS-containing polypeptide block copolymers synthesized using a combination of ATRP, ROP and click chemistry. Polym Chem 3:882–891CrossRefGoogle Scholar
  278. 278.
    Cui L, Zhu L (2006) Lamellar to inverted hexagonal mesophase transition in DNA complexes with calamitic, discotic, and cubic shaped cationic lipids. Langmuir 22:5982–5985PubMedCrossRefGoogle Scholar
  279. 279.
    Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. WIREs Nanomed Nanobiotechnol 5:582–612PubMedGoogle Scholar
  280. 280.
    Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of a-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784CrossRefGoogle Scholar
  281. 281.
    Byrne M, Murphy R, Kapetanakis A, Ramsey J, Cryan S-A, Heise A (2015) Star-shaped polypeptides: synthesis and opportunities for delivery of therapeutics. Macromol Rapid Commun 36:1862–1876PubMedCrossRefGoogle Scholar
  282. 282.
    Qi Y, Chilkoti A (2014) Growing polymers from peptides and proteins: a biomedical perspective. Polym Chem 5:266–276CrossRefGoogle Scholar
  283. 283.
    Kuo S-W, Tsai H-T (2010) Control of peptide secondary structure on star shape polypeptides tethered to polyhedral oligomeric silsesquioxane nanoparticle through click chemistry. Polymer 51:5695–5704CrossRefGoogle Scholar
  284. 284.
    Fabritz S, Hörner S, Könning D, Empting M, Reinwarth M, Dietz C, Glotzbach B, Frauendorf H, Kolmar H, Avrutina O (2012) From pico to nano: biofunctionalization of cube-octameric silsesquioxanes by peptides and miniproteins. Org Biomol Chem 10:6287–6293PubMedCrossRefGoogle Scholar
  285. 285.
    Lin Y-C, Kuo S-W (2012) Hierarchical self-assembly and secondary structures of linear polypeptides graft onto POSS in the side chain through click chemistry. Polym Chem 3:162–171CrossRefGoogle Scholar
  286. 286.
    Lin Y-C, Kuo S-W (2011) Self-assembly and secondary structures of linear polypeptides tethered to polyhedral oligomeric silsesquioxane nanoparticles through click chemistry. J Polym Sci Part A Polym Chem 49:2127–2137CrossRefGoogle Scholar
  287. 287.
    Kuo S-W, Lee H-F, Huang W-J, Jeong K-U, Chang F-C (2009) Solid state and solution self-assembly of helical polypeptides tethered to polyhedral oligomeric silsesquioxanes. Macromolecules 42:1619–1626CrossRefGoogle Scholar
  288. 288.
    Haldar U, Pan A, Mukherjee I, De P (2016) POSS semitelechelic Aβ17–19 peptide initiated helical polypeptides and their structural diversity in aqueous medium. Polym Chem 7:6231–6240CrossRefGoogle Scholar
  289. 289.
    Rinkenauer AC, Schubert S, Traeger A, Schubert US (2015) The influence of polymer architecture on in vitro pDNA transfection. J Mater Chem B 3:7477–7493CrossRefGoogle Scholar
  290. 290.
    Yang YY, Wang X, Hu Y, Hu H, Wu D-C, Xu F-J (2014) Bioreducible POSS-cored star-shaped polycation for efficient gene delivery. ACS Appl Mater Interfaces 6:1044–1052PubMedCrossRefGoogle Scholar
  291. 291.
    Jiang S, Poh YZ, Loh XJ (2014) POSS-based hybrid cationic copolymers with low aggregation potential for efficient gene delivery. Org Biomol Chem 12:6500–6506CrossRefGoogle Scholar
  292. 292.
    Jiang S, Poh YZ, Loh XJ (2015) POSS-based hybrid cationic copolymers with low aggregation potential for efficient gene delivery. RSC Adv 5:71322–71328CrossRefGoogle Scholar
  293. 293.
    Loh XJ, Zhang Z-X, Mya KY, Wu Y-I, Hea CB, Li J (2010) Efficient gene delivery with paclitaxel-loaded DNA-hybrid polyplexes based on cationic polyhedral oligomeric silsesquioxanes. J Mater Chem 20:10634–10642CrossRefGoogle Scholar
  294. 294.
    Cui L, Chen D, Zhu L (2008) Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid. ACS Nano 2:921–927PubMedCrossRefGoogle Scholar
  295. 295.
    Zou Q-C, Yan Q-J, Song G-W, Zhang S-L, Wu L-M (2007) Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique. Biosens Bioelectron 22:1461–1465PubMedCrossRefGoogle Scholar
  296. 296.
    Jeon J-H, Kakuta T, Tanaka K, Chujo Y (2015) Facile design of organic–inorganic hybrid gels for molecular recognition of nucleoside triphosphates. Bioorganic Med Chem Lett 25:2050–2055CrossRefGoogle Scholar
  297. 297.
    Liu Y-L, Liu C-S, Cho C-I, Hwu M-J (2007) Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films. Nanotechnology 18:225701CrossRefGoogle Scholar
  298. 298.
    Wu G, Su Z (2006) Polyhedral oligomeric silsesquioxane nanocomposite thin films via layer-by-layer electrostatic self-assembly. Chem Mater 18:3726–3732CrossRefGoogle Scholar
  299. 299.
    Ariga K, Yamauchi Y, Mori T, Hill JP (2013) 25th anniversary article: what can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv Mater 25:6477–6512PubMedCrossRefGoogle Scholar
  300. 300.
    Esker AR, Yu H (2012) Langmuir monolayers of siloxanes and silsesquioxanes. In: Owen MJ, Dvornic PR (eds) Silicone surface science, advances in silicon science. Springer Science + Business Media, DordrechtCrossRefGoogle Scholar
  301. 301.
    Deng J, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AE (2002) Polyhedral oligomeric silsesquioxanes: a new class of amphiphiles at the air/water interface. J Am Chem Soc 124:15194–15195PubMedCrossRefGoogle Scholar
  302. 302.
    Deng J, Hottle JR, Polidan JT, Kim H-J, Farmer-Creely CE, Viers BD, Esker AE (2004) Polyhedral oligomeric silsesquioxane amphiphiles: isotherm and Brewster angle microscopy studies of trisilanolisobutyl-POSS at the air/water interface. Langmuir 20:109–115PubMedCrossRefGoogle Scholar
  303. 303.
    Deng J, Viers BD, Esker AR, Anseth JW, Fuller GG (2005) Phase behavior and viscoelastic properties of trisilanolcyclohexyl-POSS at the air/water interface. Langmuir 21:2375–2385CrossRefGoogle Scholar
  304. 304.
    Wamke A, Dopierała K, Prochaska K, Maciejewski H, Biadasz A, Dudkowiak A (2015) Characterization of Langmuir monolayer, Langmuir-Blodgett and Langmuir-Schaefer films formed by POSS compounds. Colloids Surf A 464:110–120CrossRefGoogle Scholar
  305. 305.
    Banerjee R, Sanya MK, Bera MK, Gibaud A, Lin B, Meron M (2015) Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air–water interface. Sci Rep 5, No. 8497Google Scholar
  306. 306.
    Dutkiewicz M, Karasiewicz J, Rojewska M, Skrzypiec M, Dopierała K, Prochaska K, Maciejewski H (2016) Synthesis of an open-cage structure POSS containing various functional groups and their effect on the formation and properties of Langmuir monolayers. Chem Eur J 22:13275–13286PubMedCrossRefGoogle Scholar
  307. 307.
    Dopierała K, Bojakowska K, Karasiewicz J, Maciejewski H, Prochaska K (2016) Interfacial behaviour of cubic silsesquioxane and silica nanoparticles in Langmuir and Langmuir-Blodgett films. RSC Adv 6:94934–94941CrossRefGoogle Scholar
  308. 308.
    Paczesny J, Binkiewicz I, Janczuk M, Wybrańska K, Richter Ł, Hołyst R (2015) Langmuir and Langmuir–Blodgett films of unsymmetrical and fully condensed polyhedral oligomeric silsesquioxanes (POSS). J Phys Chem C 119:27007–27017CrossRefGoogle Scholar
  309. 309.
    Kraus-Ophir S, Jerman I, Orel B, Mandler D (2011) Symmetrical thiol functionalized polyhedral oligomeric silsesquioxanes as building blocks for LB films. Soft Matter 7:8862–8869CrossRefGoogle Scholar
  310. 310.
    Dopierala K, Wamke A, Dutkiewicz M, Maciejewski H, Prochaska K (2014) Interfacial properties of fully condensed functional silsesquioxane: a Langmuir monolayer study. J Phys Chem C 118:24548–24555CrossRefGoogle Scholar
  311. 311.
    Gunawidjaja R, Huang F, Gumenna M, Klimenko N, Nunnery GA, Shevchenko V, Tannenbaum R, Tsukruk VV (2009) Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds. Langmuir 25:1196–1209PubMedCrossRefPubMedCentralGoogle Scholar
  312. 312.
    Dopierała K, Maciejewski H, Prochaska K (2016) Interaction of polyhedral oligomeric silsesquioxane containing epoxycyclohexyl groups with cholesterol at the air/water interface. Colloids Surf B 140:135–141CrossRefGoogle Scholar
  313. 313.
    Li Z, Ma X, Guan X, Qiang X, Zang D, Chen F (2017) Aggregation behavior of star-shaped fluoropolymers containing polyhedral oligomeric silsesquioxane (POSS) at the air–water interface. Colloid Polym Sci 295:157–170CrossRefGoogle Scholar
  314. 314.
    Zhang W, Huang M, Su H, Zhang S, Yue K, Dong X-H, Li X, Liu H, Zhang S, Wesdemiotis C, Bernard Lotz B, Zhang W-B, Li Y, Cheng SZD (2016) Toward controlled hierarchical heterogeneities in giant molecules with precisely arranged nano building blocks. ACS Cent Sci 2:48–54PubMedPubMedCentralCrossRefGoogle Scholar
  315. 315.
    Raftopoulos KN, Pielichowski K (2016) Segmental dynamics in hybrid polymer/POSS nanomaterials. Progr Polym Sci 52:136–187CrossRefGoogle Scholar
  316. 316.
    Zhou H, Ye Q, Xu J (2017) Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater Chem Front 1:212–230CrossRefGoogle Scholar
  317. 317.
    Chiu C-W, Huang T-K, Wang Y-C, Alamani BG, Lin J-J (2014) Intercalation strategies in clay/polymer hybrids. Progr Polym Sci 39:443–485CrossRefGoogle Scholar
  318. 318.
    Kai J, Teo H, Toh CL, Lu X (2011) Catalytic and reinforcing effects of polyhedral oligomeric silsesquioxane (POSS)-imidazolium modified clay in an anhydride-cured epoxy. Polymer 52:1975–1982CrossRefGoogle Scholar
  319. 319.
    Hojiyev R, Ulcay Y, Hojamberdiev M, Çelik MS, Carty WM (2017) Hydrophobicity and polymer compatibility of POSS-modified Wyoming Na-montmorillonite for developing polymer-clay nanocomposites. J Colloid Interf Sci 497:393–401CrossRefGoogle Scholar
  320. 320.
    Zhao Y, Jiang X, Zhang X, Hou L (2017) Toughened elastomer/polyhedral oligomeric Ssilsesquioxane (POSS)-intercalated rectorite nanocomposites: preparation, microstructure, and mechanical properties. Polym Compos 38:E443–E450CrossRefGoogle Scholar
  321. 321.
    Yei D-Y, Kuo S-W, Su Y-C, Chang F-C (2004) Enhanced thermal properties of PS nanocomposites formed from inorganic POSS-treated montmorillonite. Polymer 45:2633–2640CrossRefGoogle Scholar
  322. 322.
    Zhao F, Wan C, Bao X, Kandasubramanian B (2009) Modification of montmorillonite with aminopropylisooctyl polyhedral oligomeric silsequioxane. J Colloid Interface Sci 333:164–170PubMedCrossRefPubMedCentralGoogle Scholar
  323. 323.
    Zhao F, Bao X, McLauchlin AR, Gu J, Wan C, Kandasubramanian B (2010) Effect of POSS on morphology and mechanical properties of polyamide 12/montmorillonite nanocomposites. Appl Clay Sci 47:249–256CrossRefGoogle Scholar
  324. 324.
    Wan C, Zhao F, Bao X, Kandasubramanian B, Duggan M (2008) Surface characteristics of polyhedral oligomeric silsesquioxane modified clay and its application in polymerization of macrocyclic polyester oligomers. J Phys Chem B 112:11915–11922PubMedCrossRefPubMedCentralGoogle Scholar
  325. 325.
    Fox DM, Maupin PH, Harris RH Jr, Gilman JW, Eldred DV, Katsoulis D, Trulove PC, De Long HC (2007) Use of a polyhedral oligomeric silsesquioxane (POSS)-imidazolium cation as an organic modifier for montmorillonite. Langmuir 23:7707–7714CrossRefGoogle Scholar
  326. 326.
    Toh CL, Xi L, Lau SK, Pramoda KP, Chua YC, Lu X (2010) Packing behaviors of structurally different polyhedral oligomeric silsesquioxane-imidazolium surfactants in clay. J Phys Chem B 114:207–214PubMedCrossRefPubMedCentralGoogle Scholar
  327. 327.
    Lee JH, Jeong YG (2011) Preparation and crystallization behavior of polylactide nanocomposites reinforced with POSS-modified montmorillonite. Fibers Polym 12:180–189CrossRefGoogle Scholar
  328. 328.
    Toh CL, Yang L, Pramoda KP, Lauc SK, Lu X (2013) Poly(ethylene terephthalate)/clay nanocomposites with trisilanolphenyl polyhedral oligomeric silsesquioxane as dispersant: simultaneously enhanced reinforcing and stabilizing effects. Polym Int 62:1492–1499CrossRefGoogle Scholar
  329. 329.
    Cui H-W, Kuo S-W (2012) Using a polyhedral oligomeric silsesquioxane surfactant and click chemistry to exfoliate montmorillonite. RSC Adv 2:12148–12152CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Centre of Molecular and Macromolecular Studies, Polish Academy of SciencesŁódźPoland

Personalised recommendations