Skip to main content

Decomposition and Ageing of Hybrid Materials with POSS

  • Chapter
  • First Online:
Polymer/POSS Nanocomposites and Hybrid Materials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The use of polyhedral oligomeric silsesquioxanes (POSSs), as reinforcing agent for making polymer composites and nanocomposites, recorded an exponential grown in the last two decades. Differently to the other most used fillers POSSs are molecules, thus combining their nanosized cage structures that have dimensions comparable with those of most polymer segments and a particular and exclusive chemical composition. These characteristics linked with their hybrid (inorganic–organic) nature allow the researchers to obtain multifunctional materials with intermediate properties between those of organic polymers and ceramics. In this chapter, the most common POSS–polymer composites, namely epoxies, polypropylene, polystyrene, polylactide, polyimides and polyurethane, were analysed in their thermal behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34:8034–8039

    Article  CAS  Google Scholar 

  2. Shockey EG, Bolf AG, Jones PF, Schwab JJ, Chaffee KP, Haddad TS, Lichtenhan JD (1999) Functionalized polyhedral oligosilsesquioxane (POSS) macromers: new graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS–siloxane triblocks. Appl Organometal Chem 13(4):311–327

    Article  CAS  Google Scholar 

  3. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440:36–42

    Article  CAS  Google Scholar 

  4. Bolln C, Tsuchida A, Frey H, Mulhaupt R (1997) Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater 9:1475–1479

    Article  CAS  Google Scholar 

  5. Lee A (2002) Proceedings of POSS nanotechnology conference, Huntington Beach, CA, Sept 25–27, 2002

    Google Scholar 

  6. Lu S, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  CAS  Google Scholar 

  7. Blanco I, Bottino FA, Cicala G, Latteri A, Recca A (2014) Synthesis and characterization of differently substituted phenyl hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos 35(1):151–157

    Article  CAS  Google Scholar 

  8. Yei DR, Kuo SW, Su YC, Chang FC (2004) Enhanced thermal properties of PS nanocomposites formed from inorganic POSS-treated montmorillonite. Polymer 45:2633–2640

    Article  CAS  Google Scholar 

  9. Blanco I, Abate L, Bottino FA, Bottino P (2014) Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aromatic bridges. J Therm Anal Calorim 117(1):243–250

    Article  CAS  Google Scholar 

  10. Blanco I, Bottino FA, Abate L (2016) Influence of n-alkyl substituents on the thermal behaviour of polyhedral oligomeric silsesquioxanes (POSSs) with different cage’s periphery. Thermochim Acta 623:50–57

    Article  CAS  Google Scholar 

  11. Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45:5557–5568

    Article  CAS  Google Scholar 

  12. Zhao L, Li J, Li Z, Zhang Y, Liao S, Yu R, Hui D (2018) Morphology and thermomechanical properties of natural rubber vulcanizates containing octavinyl polyhedral oligomeric silsesquioxane. Composite Part B 139:40–46

    Article  CAS  Google Scholar 

  13. Blanco I, Bottino FA (2012) Effect of the substituents on the thermal stability of hepta cyclopentyl, phenyl substitued-Polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites. AIP Conf Proc 1459(1):247–249

    Article  CAS  Google Scholar 

  14. Ghani K, Keshavarz MH, Jafari M, Khademian F (2018) A novel method for predicting decomposition onset temperature of cubic polyhedral oligomeric silsesquioxane derivatives. J Therm Anal Calorim. https://doi.org/10.1007/s10973-017-6881-4

    Article  CAS  Google Scholar 

  15. Strachota A, Kroutilova I, Kovarova J, Matejka L (2004) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical properties. Macromolecules 37:9457–9464

    Article  CAS  Google Scholar 

  16. Zhang Y, Lee S, Yoonessi M, Liang K, Pittman CU (2006) Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47:2984–2999

    Article  CAS  Google Scholar 

  17. Moore BM, Ramirez SM, Yandek GR et al (2011) Asymmetric aryl polyhedral oligomeric silsesquioxanes (ArPOSS) with enhanced solubility. J Organomet Chem 696:2676–2680

    Article  CAS  Google Scholar 

  18. Blanco I, Bottino FA, Bottino P (2012) Influence of symmetry/asymmetry of the nanoparticles structure on the thermal stability of polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos 33:1903–1910

    Article  CAS  Google Scholar 

  19. Menczel JD, Prime RB (2009) Thermal analysis of polymers. Fundamentals and applications. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  20. Kandola BK, Biswas B, Price D, Horrocks AR (2010) Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin. Polym Degrad Stab 95:144–152

    Article  CAS  Google Scholar 

  21. Blanco I, Oliveri L, Cicala G, Recca A (2012) Effects of novel reactive toughening agent on thermal stability of epoxy resin. J Therm Anal Calorim 108(2):685–693

    Article  CAS  Google Scholar 

  22. May CA (1988) Epoxy resins, chemistry and technology. Marcel Dekker, New York

    Google Scholar 

  23. Ellis B (1993) Chemistry and technology of epoxy resins. Chapman & Hall, London

    Book  Google Scholar 

  24. Liu YL, Wu CS, Chiu YS, Ho WH (2003) Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. J Polym Sci Part A: Polym Chem 41(15):2354–2367

    Article  CAS  Google Scholar 

  25. Sprenger S (2013) Epoxy resins modified with elastomers and surface-modified silica nanoparticles. Polymer 54(18):4790–4797

    Article  CAS  Google Scholar 

  26. Laine RM, Choi J, Lee I (2001) Organic-inorganic nanocomposites with completely defined interfacial interactions. Adv Mater 13(11):800–803

    Article  CAS  Google Scholar 

  27. Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc 123(46):11420–11430

    Article  CAS  PubMed  Google Scholar 

  28. Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31(15):4970–4974

    Article  CAS  PubMed  Google Scholar 

  29. Li GZ, Wang L, Toghiani H, Daulton TL, Koyama K, Pittman CU Jr (2001) Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ ladderlike polyphenylsilsesquioxane blends. Macromolecules 34(25):8686–8693

    Article  CAS  Google Scholar 

  30. Bharadwaj RK, Berry RJ, Farmer BL (2000) Molecular dynamics simulation study of norbornene-POSS polymers. Polym Prepr Am Chem Soc Div Polym Chem 41(1):530–531

    CAS  Google Scholar 

  31. Shockey EG, Bolf AG, Jones PF, Schwab JJ, Chaffee KP, Haddad TS, Lichtenhan JD (1999) Functionalized polyhedral oligosilsesquioxane (POSS) macromers: new graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS-siloxane triblocks. Appl Organometal Chem 13:311–327

    Article  CAS  Google Scholar 

  32. Mya KY, He C, Huang J, Xiao Y, Dai J, Siow Y (2004) Preparation and thermomechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. J Polym Sci Part A: Polym Chem 42(14):3490–3503

    Article  CAS  Google Scholar 

  33. Abad MJ, Barral L, Fasce DF, Williams RJJ (2003) Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 36(9):3128–3135

    Article  CAS  Google Scholar 

  34. Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes. epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 36(15):5666–5682

    Article  CAS  Google Scholar 

  35. Choi J, Tamaki R, Kim SG, Laine RM (2003) Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chem Mater 15(17):3365–3375

    Article  CAS  Google Scholar 

  36. Choi J, Kim SG, Laine RM (2004) Organic/inorganic hybrid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules 37(1):99–109

    Article  CAS  Google Scholar 

  37. Choi J, Yee AF, Laine RM (2004) Toughening of cubic silsesquioxane epoxy nanocomposites using core–shell rubber particles: a three-component hybrid system. Macromolecules 37(9):3267–3276

    Article  CAS  Google Scholar 

  38. Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45:5557–5568

    Article  CAS  Google Scholar 

  39. Le Baron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29

    Google Scholar 

  40. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  41. Barabasi AL, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Phys A 272:173–187

    Article  Google Scholar 

  42. Chen WY, Wang YZ, Kuo SW, Huang CF, Tung PH, Chang FC (2004) Thermal and dielectric properties and curing kinetics of nanomaterials formed from POSS-epoxy and meta-phenylenediamine. Polymer 45:6897–6908

    Article  CAS  Google Scholar 

  43. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  44. Flynn JH, Wall LA (1996) General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand Part: A Phys Chem 70A:487–513

    Article  Google Scholar 

  45. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886

    Article  CAS  Google Scholar 

  46. Liu H, Zhang W, Zheng S (2005) Montmorillonite intercalated by ammonium of octaaminopropyl polyhedral oligomeric silsesquioxane and its nanocomposites with epoxy resin. Polymer 46:157–165

    Article  CAS  Google Scholar 

  47. Jones IK, Zhou YX, Jeelani S, Mabry JM (2008) Effect of polyhedral-oligomeric-sil-sesquioxanes on thermal and mechanical behavior of SC-15 epoxy. eXPRESS Polym Lett 2(7):494–501

    Article  CAS  Google Scholar 

  48. Wang X, Hu Y, Song L, Xing W, Lu H (2010) Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus-silicon synergism of flame retardancy. J Polym Sci Part B: Polym Phys 48:693–705

    Article  CAS  Google Scholar 

  49. Nagendiran S, Alagar M, Hamerton I (2010) Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: characterization of thermal, dielectric and morphological properties. Acta Mater 58:3345–3356

    Article  CAS  Google Scholar 

  50. Pistor V, Soares BG, Mauler RS (2013) Influence of the polyhedral oligomeric silsesquioxane n-phenylaminopropyl—POSS in the thermal stability and the glass transition temperature of epoxy resin. Polímeros 23(3):331–338

    Article  CAS  Google Scholar 

  51. Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7(12):1103–1112

    Article  CAS  Google Scholar 

  52. Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8(2):212–224

    Article  CAS  Google Scholar 

  53. Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys 9(2):177–184

    Article  CAS  Google Scholar 

  54. Pistor V, Ornaghi FG, Ornaghi HL, Zattera AJ (2012) Degradation kinetic of epoxy nanocomposites containing different percentage of epoxycyclohexyl–POSS. Polym Compos 33(7):1224–1232

    Article  CAS  Google Scholar 

  55. Pistor V, Barbosa LG, Soares BG, Mauler RS (2012) Relaxation phenomena in the glass transition of epoxy/N-phenylaminopropyl–POSS nanocomposites. Polymer 53(25):5798–5805

    Article  CAS  Google Scholar 

  56. Pistor V, Ornaghi FG, Ornaghi HL, Zattera AJ (2012) Dynamic mechanical characterization of epoxy/epoxycyclohexyl–POSS nanocomposites. Mater Sci Eng A 532:339–345

    Article  CAS  Google Scholar 

  57. Raimondo M, Guadagno L, Speranza V, Bonnaud L, Dubois P, Lafdi K (2018) Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Compos B Eng 140:44–56

    Article  CAS  Google Scholar 

  58. Romano V, Naddeo C, Vertuccio L, Lafdi K, Guadagno L (2017) Experimental evaluation and modeling of thermal conductivity of tetrafunctional epoxy resin containing different carbon nanostructures. Polym Eng Sci 57(7):779–786

    Article  CAS  Google Scholar 

  59. Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6(1):1–11

    CAS  Google Scholar 

  60. Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P (2001) Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci Part B: Polym Phys 39:2727–2739

    Article  CAS  Google Scholar 

  61. Fina A, Abbenhuis HCL, Tabuani D, Frache A, Camino G (2006) Polypropylene metal functionalised POSS nanocomposites: a study by thermogravimetric analysis. Polym Degrad Stabil 91:1064–1070

    Article  CAS  Google Scholar 

  62. Fina A, Tabuani D, Frache A, Camino G (2005) Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 46:7855–7866

    Article  CAS  Google Scholar 

  63. Pracella M, Chionna D, Fina A, Tabuani D, Frache A, Camino G (2006) Polypropylene-POSS nanocomposites: morphology and crystallization behaviour. Macromol Symp 234:59–67

    Article  CAS  Google Scholar 

  64. Misra R, Fu BX, Morgan SE (2007) Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. J Polym Sci Part B Polym Phys 45:2441–2455

    Article  CAS  Google Scholar 

  65. Fina A, Tabuani D, Peijs T, Camino G (2009) POSS grafting on PPgMA by one-step reactive blending. Polymer 50:218–226

    Article  CAS  Google Scholar 

  66. Fina A, Tabuani D, Frache A, Boccaleri E, Camino G (2005) Isobutyl POSS thermal degradation. In: Le Bras M, Wilkie C, Bourbigot S (eds) Fire retardancy of polymers: new applications of mineral fillers. Royal Society of Chemistry, Cambridge, UK, pp 202–220

    Google Scholar 

  67. Fina A, Tabuani D, Camino G (2010) Polypropylene–polysilsesquioxane blends. Eur Polymer J 46:14–23

    Article  CAS  Google Scholar 

  68. Grala M, Bartczak Z, Pracella M (2013) Morphology and mechanical properties of polypropylene-POSS hybrid nanocomposites obtained by reactive blending. Polym Compos 34(6):929–941

    Article  CAS  Google Scholar 

  69. Yang M, Yao XX, Wang G, Ding H (2008) A simple method to synthesize sea urchin-like polyaniline hollow spheres. Colloid Surf 324(1–3):113–116

    CAS  Google Scholar 

  70. Li J, Sun FF (2009) The interfacial feature of thermoplastic polystyrene composite filled with nitric acid oxidized carbon fiber. Surf Interface Anal 41(3):255–258

    Article  CAS  Google Scholar 

  71. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  CAS  Google Scholar 

  72. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    Article  CAS  Google Scholar 

  73. Cavallaro G, Lazzara G, Milioto S (2011) Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study. Langmuir 27(3):1158–1167

    Article  CAS  PubMed  Google Scholar 

  74. Haddad TS, Viers BD, Phillips SH (2001) Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. J Inorg Organomet Polym 11(3):155–164

    Article  CAS  Google Scholar 

  75. Zheng L, Kasi RM, Farris RJ, Coughlin EB (2012) Synthesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane. J Polym Sci Part A Polym Chem 40:885–891

    Article  CAS  Google Scholar 

  76. Haddad TS, Lichtenhan JD (1996) Hybrid organic–inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29(22):7302–7304

    Article  CAS  Google Scholar 

  77. Gonzalez RI, Phillips SH, Hoflund GB (2000) In situ oxygen atom erosion study of a polyhedral oligomeric silsequioxanes-siloxane copolymer. J Spacecraft Rockets 37:463–467

    Article  CAS  Google Scholar 

  78. Cardoen G, Coughlin EB (2004) Hemi-telechelic polystyrene-POSS copolymers as model systems for the study of well-defined inorganic/organic hybrid materials. Macromolecules 37:5123–5126

    Article  CAS  Google Scholar 

  79. Tanaka K, Adachi S, Chujo Y (2009) Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci Part A: Polym Chem 47:5690–5697

    Article  CAS  Google Scholar 

  80. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746

    Article  CAS  Google Scholar 

  81. Monticelli O, Fina A, Ullah A, Waghmare P (2009) Preparation, characterization, and properties of novel PSMA-POSS systems by reactive blending. Macromolecules 42:6614–6623

    Article  CAS  Google Scholar 

  82. Guo X, Wang W, Liu L (2010) A novel strategy to synthesize POSS/PS composite and study on its thermal properties. Polym Bull 64:15–25

    Article  CAS  Google Scholar 

  83. Xu HY, Kuo SW, Lee JS, Chang FC (2002) Glass transition temperatures of poly(hydroxystyrene-covinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer 43(19):5117–5124

    Article  CAS  Google Scholar 

  84. Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA (2012) Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim 107(3):1083–1091

    Article  CAS  Google Scholar 

  85. Blanco I, Abate L, Bottino FA, Bottino P (2012) Hepta isobutyl polyhedral oligomeric silsesquioxanes (hib-POSS) A thermal degradation study. J Therm Anal Calorim 108(2):807–815

    Article  CAS  Google Scholar 

  86. Blanco I, Abate L, Bottino FA, Bottino P (2012) Thermal degradation of hepta cyclopentyl, mono phenyl-polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites. Polym Degrad Stabil 97:849–855

    Article  CAS  Google Scholar 

  87. Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes. Organometallics 10(7):2526–2528

    Article  CAS  Google Scholar 

  88. Blanco I, Abate L, Antonelli ML, Bottino FA, Bottino P (2012) Phenyl hepta cyclopentyl–polyhedral oligomeric silsesquioxane (ph,hcp-POSS)/polystyrene (PS) nanocomposites: the influence of substituents in the phenyl group on the thermal stability. eXPRESS Polymer Letters 6(12):997–1006

    Article  CAS  Google Scholar 

  89. Blanco I, Bottino FA (2013) Thermal study on phenyl, hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos 34(2):225–232

    Article  CAS  Google Scholar 

  90. Blanco I, Abate L, Bottino FA, Bottino P (2014) Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aromatic bridges. J Therm Anal Cal 117(1):243–250

    Article  CAS  Google Scholar 

  91. Blanco I, Bottino FA, Cicala G, Latteri A, Recca A (2013) A kinetic study of the thermal and thermal oxidative degradations of new bridged POSS/PS nanocomposites. Polym Degrad Stabil 98:2564–2570

    Article  CAS  Google Scholar 

  92. Blanco I, Bottino FA, Cicala G, Cozzo G, Latteri A, Recca A (2015) Synthesis and thermal characterization of new dumbbell shaped POSS/PS nanocomposites: influence of the symmetrical structure of the nanoparticles on the dispersion/aggregation in the polymer matrix. Polym Compos 36(8):1394–1400

    Article  CAS  Google Scholar 

  93. Blanco I, Abate L, Bottino FA (2014) Synthesis and thermal properties of new dumbbell-shaped isobutyl-substituted POSSs linked by aliphatic bridges. J Therm Anal Calorim 116:5–13

    Article  CAS  Google Scholar 

  94. Blanco I, Abate L, Bottino FA (2015) Synthesis and thermal characterization of new dumbbell-shaped cyclopentyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal Calorim 121:1039–1048

    Article  CAS  Google Scholar 

  95. Blanco I, Abate L, Bottino FA, Bottino P (2014) Thermal behaviour of a series of novel aliphatic bridged polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites: the influence of the bridge length on the resistance to thermal degradation. Polym Degrad Stabil 102:132–137

    Article  CAS  Google Scholar 

  96. Blanco I, Siracusa V (2013) Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim 112(3):1171–1177

    Article  CAS  Google Scholar 

  97. Wang L, Ma W, Gross RA, McCarthy SP (1998) Reactive compatibilization of biodegradable blends of poly (lactic acid) and poly(ε-caprolactone). Polym Degrad Stabil 59:161–168

    Article  CAS  Google Scholar 

  98. Sarazin P, Favis BD (2003) Morphology control in co-continuous poly(l-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(l-lactide) materials. Biomacromol 4:1669–1679

    Article  CAS  Google Scholar 

  99. Ray SS, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem Mater 15:1456–1465

    Article  CAS  Google Scholar 

  100. Chen G-X, Kim H-S, Park BH, Yoon J-S (2005) Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(l-lactic acid). J Phys Chem B 109:22237–22243

    Article  CAS  PubMed  Google Scholar 

  101. Zou J, Chen X, Jiang XB, Zhang J, Guo YB, Huang FR (2011) Poly(l-lactide) nanocomposites containing octaglycidylether polyhedral oligomeric silsesquioxane: Preparation, structure and properties. eXPRESS Polym Lett 5(8):662–673

    Article  CAS  Google Scholar 

  102. Yu J, Qiu Z (2011) Preparation and properties of biodegradable poly(l-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces 3:890–897

    Article  CAS  PubMed  Google Scholar 

  103. Xuan S, Hu Y, Song L, Wang X, Yang H, Lu H (2012) Synergistic effect of polyhedral oligomeric silsesquioxane on the flame retardancy and thermal degradation of intumescent flame retardant polylactide. J Combust Sci Technol 184:456–468

    Article  CAS  Google Scholar 

  104. Kodal M, Sirin H, Ozkoc G (2014) Effects of screw speed on the properties of plasticized PLA/POSS composites. AIP Conf Proc 1593:420–423

    Article  CAS  Google Scholar 

  105. Monticelli O, Putti M, Gardella L, Cavallo D, Basso A, Prato M, Nitti S (2014) New stereocomplex PLA-based fibers: effect of POSS on polymer functionalization and properties. Macromolecules 47:4718–4727

    Article  CAS  Google Scholar 

  106. Gardella L, Colonna S, Fina A, Monticelli O (2014) On novel bio-hybrid system based on PLA and POSS. Colloid Polym Sci 292:3271–3278

    Article  CAS  Google Scholar 

  107. Wang R, Wang S, Zhang Y (2009) Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J Appl Polym Sci 113:3095–3102

    Article  CAS  Google Scholar 

  108. Pramoda KP, Koh CB, Hazrat H, He CB (2014) Performance enhancement of polylactide by nanoblending with POSS and graphene oxide. Polym Compos 35:118–126

    Article  CAS  Google Scholar 

  109. Sirin H, Kodal M, Ozkoc G (2014) The influence of POSS type on the properties of PLA. Polym Compos 37(5):1497–1506

    Article  CAS  Google Scholar 

  110. Wu J, Haddad TS, Mather PT (2009) Vertex group effects in entangled polystyrene–polyhedral oligosilsesquioxane (POSS) copolymers. Macromolecules 42(4):1142–1152

    Article  CAS  Google Scholar 

  111. Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ohya H, Kudryavtsev VV, Semenova SI (eds) (1996) Polyimide membranes—applications, fabrications, and properties. Kodansha Ltd., Tokyo

    Google Scholar 

  113. Buhler KU (1978) Spezialplaste. Academie-Verlag, Berlin [in German, Chap. 7.1.11.1]

    Google Scholar 

  114. Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974

    Article  CAS  Google Scholar 

  115. Georgiev A, Dimov D, Spassova E, Assa J, Dineff P, Danev G (2012) Chemical and physical properties of polyimides: biomedical and engineering applications. In: Abadie MJM (eds) High performance polymers—polyimides based—from chemistry to applications. Intech

    Google Scholar 

  116. Cicala G, Ognibene G, Portuesi S, Blanco I, Rapisarda M, Pergolizzi E, Recca G (2018) Comparison of Ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends. Materials 11(2):285–299

    Article  PubMed Central  Google Scholar 

  117. Sena SK, Banerjee S (2012) A novel structural polyimide material with phosphorus and POSS synergistic for atomic oxygen resistance. RSC Adv 2:6274–6289

    Article  CAS  Google Scholar 

  118. Verker R, Grossman E, Gouzman I, Noam E (2007) Residual stress effect on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen. Polymer 48(1):19–24

    Article  CAS  Google Scholar 

  119. Shimamura H, Nakamura T (2009) Mechanical properties degradation of polyimide films irradiated by atomic oxygen. Polym Degrad Stabil 94(9):1389–1396

    Article  CAS  Google Scholar 

  120. Gilman J, Schlitzer DS, Lichtenhan JD (1996) Low earth orbit resistant siloxane copolymers. J Appl Polym Sci 60(4):591–596

    Article  CAS  Google Scholar 

  121. Reddy MR, Srinivasamurthy N, Agrawal BL (1993) Atomic oxygen protective coatings for Kapton film: a review. Surf Coat Tech 58(1):1–17

    Article  CAS  Google Scholar 

  122. Song G, Li X, Jiang Q, Mu J, Jiang Z (2015) A novel structural polyimide material with phosphorus and POSS synergistic for atomic oxygen resistance. RSC Adv 5:11980–11988

    Article  CAS  Google Scholar 

  123. Li X, Hao J, Jiang Q, Mu J, Jiang Z (2015) Phosphorus-containing polyhedral oligomeric silsesquioxane/polyimides hybrid materials with low dielectric constant and low coefficients of thermal expansion. J Appl Polym Sci 132(39):42611–42617

    Google Scholar 

  124. Atar N, Grossman E, Gouzman I, Bolker A, Murray VJ, Marshall BC, Qian M, Minton TK, Hanein Y (2015) Atomic-oxygen-durable and electrically-conductive CNT-POSS polyimide flexible films for space applications. ACS Appl Mater Interfaces 7:12047–12056

    Article  CAS  PubMed  Google Scholar 

  125. van der Pauw LJ (1958) A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9

    Google Scholar 

  126. Huang J-C, He C-B, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44:4491–4499

    Article  CAS  Google Scholar 

  127. Govindaraj B, Sundararajan P, Sarojadevi M (2012) Synthesis and characterization of polyimide/ polyhedral oligomeric silsesquioxane nanocomposites containing quinolyl moiety. Polym Int 61:1344–1352

    Article  CAS  Google Scholar 

  128. Pan H, Zhang Y, Pu H, Chang Z (2014) Organic-inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole. J Power Sources 63:195–202

    Article  CAS  Google Scholar 

  129. Liu N, Wei K, Wang L, Zheng S (2016) Organic-inorganic polyimides with double decker silsesquioxane in the main chains. Polym Chem 7:1158–1167

    Article  CAS  Google Scholar 

  130. Qiu J, Xu S, Liu N, Wei K, Li L, Zheng S (2018) Organic–inorganic polyimide nanocomposites containing a tetrafunctional polyhedral oligomeric silsesquioxane amine: synthesis, morphology and thermomechanical properties. Polym Int 67:301–312

    Article  CAS  Google Scholar 

  131. Jung Y, Byun S, Park S, Lee H (2014) Polyimide-organosilicate hybrids with improved thermal and optical properties. ACS Appl Mater Interfaces 6:6054–6061

    Article  CAS  PubMed  Google Scholar 

  132. Tu Y-C, Suppes GJ, Hsieh F-H (2009) Thermal and mechanical behavior of flexible polyurethane-molded plastic films and water-blown foams with epoxidized soybean oil. J Appl Polym Sci 111:1311–1317

    Article  CAS  Google Scholar 

  133. Byczyński Ł, Dutkiewicz M, Januszewski R (2017) Thermal behaviour and flame retardancy of polyurethane high-solid coatings modified with hexakis(2,3-epoxypropyl)cyclotriphosphazene. Prog Org Coat 108:51–58

    Article  CAS  Google Scholar 

  134. Klempner D, Frisch KC (1991) Handbook of polymeric foams and foam technology. Oxford University Press, New York

    Google Scholar 

  135. Wirpsza Z (1993) Polyurethanes: chemistry, technology, and applications. Ellis Horwood, New York

    Google Scholar 

  136. Randall D, Lee S (2002) The polyurethanes book. Wiley, New York

    Google Scholar 

  137. Król P (2007) Synthesis methods chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 52:915–1015

    Article  CAS  Google Scholar 

  138. Kang SK, Cho IS, Kim SB (2008) Preparation and characterization of antimicrobial polyurethane foam modified by urushiol and cardanol. Elastomer 43:124

    CAS  Google Scholar 

  139. Zammarano M, Kramer RH, Harris R, Ohlemiller TJ, Shields JR, Rahatekar SS, Lacerda S, Gilman JW (2008) Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym Adv Tech 19:588–595

    Article  CAS  Google Scholar 

  140. Liu H, Zheng S (2005) Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol Rapid Commun 26:196–200

    Article  CAS  Google Scholar 

  141. Zuo M, Chi TT (1999) Preparation and characterization of poly(urethane-imide) films prepared from reactive polyimide and polyurethane prepolymer. Polymer 40:5153–5160

    Article  CAS  Google Scholar 

  142. Liu Y, Ni Y, Zheng S (2006) Polyurethane networks modified with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Macromol Chem Phys 207:1842–1851

    Article  CAS  Google Scholar 

  143. Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2006) Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules 39:7037–7043

    Article  CAS  Google Scholar 

  144. Madbouly SA, Otaigbe JU, Nanda AK, Wicks DA (2007) Rheological behavior of POSS/polyurethane-urea nanocomposite films prepared by homogeneous solution polymerization in aqueous dispersions. Macromolecules 40:4982–4991

    Article  CAS  Google Scholar 

  145. Zhang S, Zou Q, Wu L (2006) Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromol Mater Eng 291:895–901

    Article  CAS  Google Scholar 

  146. Lewicki JP, Pielichowski K, De La Croix T, Janowski B, Todd D, Liggat JJ (2010) Thermal degradation studies of polyurethane/POSS nanohybrid elastomers. Polym Degrad Stabil 95:1099–1105

    Article  CAS  Google Scholar 

  147. Rodante F, Vecchio S, Tomassetti M (2002) Kinetic analysis of thermal decomposition for penicillin sodium salts—model-fitting and model-free methods. J Pharm Biomed Anal 29:1031–1043

    Article  CAS  PubMed  Google Scholar 

  148. Blanco I, Abate L, Antonelli ML, Bottino FA (2013) The regression of isothermal thermogravimetric data to evaluate degradation Ea values of polymers: a comparison with literature methods and an evaluation of lifetime predictions reliability. Part II. Polym Degrad Stabil 98:2291–2296

    Article  CAS  Google Scholar 

  149. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  150. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328

    Article  CAS  Google Scholar 

  151. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C 6:183–195

    Article  Google Scholar 

  152. Janowski B, Pielichowski K (2016) A kinetic analysis of the thermo-oxidative degradation of PU/POSS nanohybrid elastomers. Silicon 8:65–74

    Article  CAS  Google Scholar 

  153. Pagacz J, Hebda E, Michałowski S, Ozimek J, Sternik D, Pielichowski K (2016) Polyurethane foams chemically reinforced with POSS—Thermal degradation studies. Thermochim Acta 642:95–104

    Article  CAS  Google Scholar 

  154. Huang J, Jiang P, Li X, Huang Y (2016) Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J Mater Sci 51:2443–2452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blanco, I. (2018). Decomposition and Ageing of Hybrid Materials with POSS. In: Kalia, S., Pielichowski, K. (eds) Polymer/POSS Nanocomposites and Hybrid Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-02327-0_13

Download citation

Publish with us

Policies and ethics