Advertisement

Decomposition and Ageing of Hybrid Materials with POSS

  • Ignazio BlancoEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The use of polyhedral oligomeric silsesquioxanes (POSSs), as reinforcing agent for making polymer composites and nanocomposites, recorded an exponential grown in the last two decades. Differently to the other most used fillers POSSs are molecules, thus combining their nanosized cage structures that have dimensions comparable with those of most polymer segments and a particular and exclusive chemical composition. These characteristics linked with their hybrid (inorganic–organic) nature allow the researchers to obtain multifunctional materials with intermediate properties between those of organic polymers and ceramics. In this chapter, the most common POSS–polymer composites, namely epoxies, polypropylene, polystyrene, polylactide, polyimides and polyurethane, were analysed in their thermal behaviour.

Keywords

POSS Thermal stability Nanocomposites Thermogravimetry Hybrid materials Ageing 

References

  1. 1.
    Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34:8034–8039CrossRefGoogle Scholar
  2. 2.
    Shockey EG, Bolf AG, Jones PF, Schwab JJ, Chaffee KP, Haddad TS, Lichtenhan JD (1999) Functionalized polyhedral oligosilsesquioxane (POSS) macromers: new graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS–siloxane triblocks. Appl Organometal Chem 13(4):311–327CrossRefGoogle Scholar
  3. 3.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440:36–42CrossRefGoogle Scholar
  4. 4.
    Bolln C, Tsuchida A, Frey H, Mulhaupt R (1997) Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater 9:1475–1479CrossRefGoogle Scholar
  5. 5.
    Lee A (2002) Proceedings of POSS nanotechnology conference, Huntington Beach, CA, Sept 25–27, 2002 Google Scholar
  6. 6.
    Lu S, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712CrossRefGoogle Scholar
  7. 7.
    Blanco I, Bottino FA, Cicala G, Latteri A, Recca A (2014) Synthesis and characterization of differently substituted phenyl hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos 35(1):151–157CrossRefGoogle Scholar
  8. 8.
    Yei DR, Kuo SW, Su YC, Chang FC (2004) Enhanced thermal properties of PS nanocomposites formed from inorganic POSS-treated montmorillonite. Polymer 45:2633–2640CrossRefGoogle Scholar
  9. 9.
    Blanco I, Abate L, Bottino FA, Bottino P (2014) Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aromatic bridges. J Therm Anal Calorim 117(1):243–250CrossRefGoogle Scholar
  10. 10.
    Blanco I, Bottino FA, Abate L (2016) Influence of n-alkyl substituents on the thermal behaviour of polyhedral oligomeric silsesquioxanes (POSSs) with different cage’s periphery. Thermochim Acta 623:50–57CrossRefGoogle Scholar
  11. 11.
    Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45:5557–5568CrossRefGoogle Scholar
  12. 12.
    Zhao L, Li J, Li Z, Zhang Y, Liao S, Yu R, Hui D (2018) Morphology and thermomechanical properties of natural rubber vulcanizates containing octavinyl polyhedral oligomeric silsesquioxane. Composite Part B 139:40–46CrossRefGoogle Scholar
  13. 13.
    Blanco I, Bottino FA (2012) Effect of the substituents on the thermal stability of hepta cyclopentyl, phenyl substitued-Polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites. AIP Conf Proc 1459(1):247–249CrossRefGoogle Scholar
  14. 14.
    Ghani K, Keshavarz MH, Jafari M, Khademian F (2018) A novel method for predicting decomposition onset temperature of cubic polyhedral oligomeric silsesquioxane derivatives. J Therm Anal Calorim.  https://doi.org/10.1007/s10973-017-6881-4CrossRefGoogle Scholar
  15. 15.
    Strachota A, Kroutilova I, Kovarova J, Matejka L (2004) Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical properties. Macromolecules 37:9457–9464CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Lee S, Yoonessi M, Liang K, Pittman CU (2006) Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47:2984–2999CrossRefGoogle Scholar
  17. 17.
    Moore BM, Ramirez SM, Yandek GR et al (2011) Asymmetric aryl polyhedral oligomeric silsesquioxanes (ArPOSS) with enhanced solubility. J Organomet Chem 696:2676–2680CrossRefGoogle Scholar
  18. 18.
    Blanco I, Bottino FA, Bottino P (2012) Influence of symmetry/asymmetry of the nanoparticles structure on the thermal stability of polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos 33:1903–1910CrossRefGoogle Scholar
  19. 19.
    Menczel JD, Prime RB (2009) Thermal analysis of polymers. Fundamentals and applications. Wiley, Hoboken, New JerseyCrossRefGoogle Scholar
  20. 20.
    Kandola BK, Biswas B, Price D, Horrocks AR (2010) Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin. Polym Degrad Stab 95:144–152CrossRefGoogle Scholar
  21. 21.
    Blanco I, Oliveri L, Cicala G, Recca A (2012) Effects of novel reactive toughening agent on thermal stability of epoxy resin. J Therm Anal Calorim 108(2):685–693CrossRefGoogle Scholar
  22. 22.
    May CA (1988) Epoxy resins, chemistry and technology. Marcel Dekker, New YorkGoogle Scholar
  23. 23.
    Ellis B (1993) Chemistry and technology of epoxy resins. Chapman & Hall, LondonCrossRefGoogle Scholar
  24. 24.
    Liu YL, Wu CS, Chiu YS, Ho WH (2003) Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. J Polym Sci Part A: Polym Chem 41(15):2354–2367CrossRefGoogle Scholar
  25. 25.
    Sprenger S (2013) Epoxy resins modified with elastomers and surface-modified silica nanoparticles. Polymer 54(18):4790–4797CrossRefGoogle Scholar
  26. 26.
    Laine RM, Choi J, Lee I (2001) Organic-inorganic nanocomposites with completely defined interfacial interactions. Adv Mater 13(11):800–803CrossRefGoogle Scholar
  27. 27.
    Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) Organic/inorganic hybrid composites from cubic silsesquioxanes. J Am Chem Soc 123(46):11420–11430PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31(15):4970–4974PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Li GZ, Wang L, Toghiani H, Daulton TL, Koyama K, Pittman CU Jr (2001) Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ ladderlike polyphenylsilsesquioxane blends. Macromolecules 34(25):8686–8693CrossRefGoogle Scholar
  30. 30.
    Bharadwaj RK, Berry RJ, Farmer BL (2000) Molecular dynamics simulation study of norbornene-POSS polymers. Polym Prepr Am Chem Soc Div Polym Chem 41(1):530–531Google Scholar
  31. 31.
    Shockey EG, Bolf AG, Jones PF, Schwab JJ, Chaffee KP, Haddad TS, Lichtenhan JD (1999) Functionalized polyhedral oligosilsesquioxane (POSS) macromers: new graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS-siloxane triblocks. Appl Organometal Chem 13:311–327CrossRefGoogle Scholar
  32. 32.
    Mya KY, He C, Huang J, Xiao Y, Dai J, Siow Y (2004) Preparation and thermomechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. J Polym Sci Part A: Polym Chem 42(14):3490–3503CrossRefGoogle Scholar
  33. 33.
    Abad MJ, Barral L, Fasce DF, Williams RJJ (2003) Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 36(9):3128–3135CrossRefGoogle Scholar
  34. 34.
    Choi J, Yee AF, Laine RM (2003) Organic/inorganic hybrid composites from cubic silsesquioxanes. epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 36(15):5666–5682CrossRefGoogle Scholar
  35. 35.
    Choi J, Tamaki R, Kim SG, Laine RM (2003) Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chem Mater 15(17):3365–3375CrossRefGoogle Scholar
  36. 36.
    Choi J, Kim SG, Laine RM (2004) Organic/inorganic hybrid epoxy nanocomposites from aminophenylsilsesquioxanes. Macromolecules 37(1):99–109CrossRefGoogle Scholar
  37. 37.
    Choi J, Yee AF, Laine RM (2004) Toughening of cubic silsesquioxane epoxy nanocomposites using core–shell rubber particles: a three-component hybrid system. Macromolecules 37(9):3267–3276CrossRefGoogle Scholar
  38. 38.
    Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45:5557–5568CrossRefGoogle Scholar
  39. 39.
    Le Baron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29Google Scholar
  40. 40.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  41. 41.
    Barabasi AL, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Phys A 272:173–187CrossRefGoogle Scholar
  42. 42.
    Chen WY, Wang YZ, Kuo SW, Huang CF, Tung PH, Chang FC (2004) Thermal and dielectric properties and curing kinetics of nanomaterials formed from POSS-epoxy and meta-phenylenediamine. Polymer 45:6897–6908CrossRefGoogle Scholar
  43. 43.
    Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  44. 44.
    Flynn JH, Wall LA (1996) General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand Part: A Phys Chem 70A:487–513CrossRefGoogle Scholar
  45. 45.
    Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38(11):1881–1886CrossRefGoogle Scholar
  46. 46.
    Liu H, Zhang W, Zheng S (2005) Montmorillonite intercalated by ammonium of octaaminopropyl polyhedral oligomeric silsesquioxane and its nanocomposites with epoxy resin. Polymer 46:157–165CrossRefGoogle Scholar
  47. 47.
    Jones IK, Zhou YX, Jeelani S, Mabry JM (2008) Effect of polyhedral-oligomeric-sil-sesquioxanes on thermal and mechanical behavior of SC-15 epoxy. eXPRESS Polym Lett 2(7):494–501CrossRefGoogle Scholar
  48. 48.
    Wang X, Hu Y, Song L, Xing W, Lu H (2010) Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus-silicon synergism of flame retardancy. J Polym Sci Part B: Polym Phys 48:693–705CrossRefGoogle Scholar
  49. 49.
    Nagendiran S, Alagar M, Hamerton I (2010) Octasilsesquioxane-reinforced DGEBA and TGDDM epoxy nanocomposites: characterization of thermal, dielectric and morphological properties. Acta Mater 58:3345–3356CrossRefGoogle Scholar
  50. 50.
    Pistor V, Soares BG, Mauler RS (2013) Influence of the polyhedral oligomeric silsesquioxane n-phenylaminopropyl—POSS in the thermal stability and the glass transition temperature of epoxy resin. Polímeros 23(3):331–338CrossRefGoogle Scholar
  51. 51.
    Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7(12):1103–1112CrossRefGoogle Scholar
  52. 52.
    Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8(2):212–224CrossRefGoogle Scholar
  53. 53.
    Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys 9(2):177–184CrossRefGoogle Scholar
  54. 54.
    Pistor V, Ornaghi FG, Ornaghi HL, Zattera AJ (2012) Degradation kinetic of epoxy nanocomposites containing different percentage of epoxycyclohexyl–POSS. Polym Compos 33(7):1224–1232CrossRefGoogle Scholar
  55. 55.
    Pistor V, Barbosa LG, Soares BG, Mauler RS (2012) Relaxation phenomena in the glass transition of epoxy/N-phenylaminopropyl–POSS nanocomposites. Polymer 53(25):5798–5805CrossRefGoogle Scholar
  56. 56.
    Pistor V, Ornaghi FG, Ornaghi HL, Zattera AJ (2012) Dynamic mechanical characterization of epoxy/epoxycyclohexyl–POSS nanocomposites. Mater Sci Eng A 532:339–345CrossRefGoogle Scholar
  57. 57.
    Raimondo M, Guadagno L, Speranza V, Bonnaud L, Dubois P, Lafdi K (2018) Multifunctional graphene/POSS epoxy resin tailored for aircraft lightning strike protection. Compos B Eng 140:44–56CrossRefGoogle Scholar
  58. 58.
    Romano V, Naddeo C, Vertuccio L, Lafdi K, Guadagno L (2017) Experimental evaluation and modeling of thermal conductivity of tetrafunctional epoxy resin containing different carbon nanostructures. Polym Eng Sci 57(7):779–786CrossRefGoogle Scholar
  59. 59.
    Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6(1):1–11Google Scholar
  60. 60.
    Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P (2001) Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci Part B: Polym Phys 39:2727–2739CrossRefGoogle Scholar
  61. 61.
    Fina A, Abbenhuis HCL, Tabuani D, Frache A, Camino G (2006) Polypropylene metal functionalised POSS nanocomposites: a study by thermogravimetric analysis. Polym Degrad Stabil 91:1064–1070CrossRefGoogle Scholar
  62. 62.
    Fina A, Tabuani D, Frache A, Camino G (2005) Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 46:7855–7866CrossRefGoogle Scholar
  63. 63.
    Pracella M, Chionna D, Fina A, Tabuani D, Frache A, Camino G (2006) Polypropylene-POSS nanocomposites: morphology and crystallization behaviour. Macromol Symp 234:59–67CrossRefGoogle Scholar
  64. 64.
    Misra R, Fu BX, Morgan SE (2007) Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. J Polym Sci Part B Polym Phys 45:2441–2455CrossRefGoogle Scholar
  65. 65.
    Fina A, Tabuani D, Peijs T, Camino G (2009) POSS grafting on PPgMA by one-step reactive blending. Polymer 50:218–226CrossRefGoogle Scholar
  66. 66.
    Fina A, Tabuani D, Frache A, Boccaleri E, Camino G (2005) Isobutyl POSS thermal degradation. In: Le Bras M, Wilkie C, Bourbigot S (eds) Fire retardancy of polymers: new applications of mineral fillers. Royal Society of Chemistry, Cambridge, UK, pp 202–220Google Scholar
  67. 67.
    Fina A, Tabuani D, Camino G (2010) Polypropylene–polysilsesquioxane blends. Eur Polymer J 46:14–23CrossRefGoogle Scholar
  68. 68.
    Grala M, Bartczak Z, Pracella M (2013) Morphology and mechanical properties of polypropylene-POSS hybrid nanocomposites obtained by reactive blending. Polym Compos 34(6):929–941CrossRefGoogle Scholar
  69. 69.
    Yang M, Yao XX, Wang G, Ding H (2008) A simple method to synthesize sea urchin-like polyaniline hollow spheres. Colloid Surf 324(1–3):113–116Google Scholar
  70. 70.
    Li J, Sun FF (2009) The interfacial feature of thermoplastic polystyrene composite filled with nitric acid oxidized carbon fiber. Surf Interface Anal 41(3):255–258CrossRefGoogle Scholar
  71. 71.
    Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35CrossRefGoogle Scholar
  72. 72.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575CrossRefGoogle Scholar
  73. 73.
    Cavallaro G, Lazzara G, Milioto S (2011) Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study. Langmuir 27(3):1158–1167PubMedCrossRefGoogle Scholar
  74. 74.
    Haddad TS, Viers BD, Phillips SH (2001) Polyhedral oligomeric silsesquioxane (POSS)-styrene macromers. J Inorg Organomet Polym 11(3):155–164CrossRefGoogle Scholar
  75. 75.
    Zheng L, Kasi RM, Farris RJ, Coughlin EB (2012) Synthesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane. J Polym Sci Part A Polym Chem 40:885–891CrossRefGoogle Scholar
  76. 76.
    Haddad TS, Lichtenhan JD (1996) Hybrid organic–inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29(22):7302–7304CrossRefGoogle Scholar
  77. 77.
    Gonzalez RI, Phillips SH, Hoflund GB (2000) In situ oxygen atom erosion study of a polyhedral oligomeric silsequioxanes-siloxane copolymer. J Spacecraft Rockets 37:463–467CrossRefGoogle Scholar
  78. 78.
    Cardoen G, Coughlin EB (2004) Hemi-telechelic polystyrene-POSS copolymers as model systems for the study of well-defined inorganic/organic hybrid materials. Macromolecules 37:5123–5126CrossRefGoogle Scholar
  79. 79.
    Tanaka K, Adachi S, Chujo Y (2009) Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci Part A: Polym Chem 47:5690–5697CrossRefGoogle Scholar
  80. 80.
    Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746CrossRefGoogle Scholar
  81. 81.
    Monticelli O, Fina A, Ullah A, Waghmare P (2009) Preparation, characterization, and properties of novel PSMA-POSS systems by reactive blending. Macromolecules 42:6614–6623CrossRefGoogle Scholar
  82. 82.
    Guo X, Wang W, Liu L (2010) A novel strategy to synthesize POSS/PS composite and study on its thermal properties. Polym Bull 64:15–25CrossRefGoogle Scholar
  83. 83.
    Xu HY, Kuo SW, Lee JS, Chang FC (2002) Glass transition temperatures of poly(hydroxystyrene-covinylpyrrolidone-co-isobutylstyryl polyhedral oligosilsesquioxanes). Polymer 43(19):5117–5124CrossRefGoogle Scholar
  84. 84.
    Blanco I, Abate L, Bottino FA, Bottino P, Chiacchio MA (2012) Thermal degradation of differently substituted cyclopentyl polyhedral oligomeric silsesquioxane (CP-POSS) nanoparticles. J Therm Anal Calorim 107(3):1083–1091CrossRefGoogle Scholar
  85. 85.
    Blanco I, Abate L, Bottino FA, Bottino P (2012) Hepta isobutyl polyhedral oligomeric silsesquioxanes (hib-POSS) A thermal degradation study. J Therm Anal Calorim 108(2):807–815CrossRefGoogle Scholar
  86. 86.
    Blanco I, Abate L, Bottino FA, Bottino P (2012) Thermal degradation of hepta cyclopentyl, mono phenyl-polyhedral oligomeric silsesquioxane (hcp-POSS)/polystyrene (PS) nanocomposites. Polym Degrad Stabil 97:849–855CrossRefGoogle Scholar
  87. 87.
    Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes. Organometallics 10(7):2526–2528CrossRefGoogle Scholar
  88. 88.
    Blanco I, Abate L, Antonelli ML, Bottino FA, Bottino P (2012) Phenyl hepta cyclopentyl–polyhedral oligomeric silsesquioxane (ph,hcp-POSS)/polystyrene (PS) nanocomposites: the influence of substituents in the phenyl group on the thermal stability. eXPRESS Polymer Letters 6(12):997–1006CrossRefGoogle Scholar
  89. 89.
    Blanco I, Bottino FA (2013) Thermal study on phenyl, hepta isobutyl-polyhedral oligomeric silsesquioxane/polystyrene nanocomposites. Polym Compos 34(2):225–232CrossRefGoogle Scholar
  90. 90.
    Blanco I, Abate L, Bottino FA, Bottino P (2014) Synthesis, characterization and thermal stability of new dumbbell-shaped isobutyl-substituted POSSs linked by aromatic bridges. J Therm Anal Cal 117(1):243–250CrossRefGoogle Scholar
  91. 91.
    Blanco I, Bottino FA, Cicala G, Latteri A, Recca A (2013) A kinetic study of the thermal and thermal oxidative degradations of new bridged POSS/PS nanocomposites. Polym Degrad Stabil 98:2564–2570CrossRefGoogle Scholar
  92. 92.
    Blanco I, Bottino FA, Cicala G, Cozzo G, Latteri A, Recca A (2015) Synthesis and thermal characterization of new dumbbell shaped POSS/PS nanocomposites: influence of the symmetrical structure of the nanoparticles on the dispersion/aggregation in the polymer matrix. Polym Compos 36(8):1394–1400CrossRefGoogle Scholar
  93. 93.
    Blanco I, Abate L, Bottino FA (2014) Synthesis and thermal properties of new dumbbell-shaped isobutyl-substituted POSSs linked by aliphatic bridges. J Therm Anal Calorim 116:5–13CrossRefGoogle Scholar
  94. 94.
    Blanco I, Abate L, Bottino FA (2015) Synthesis and thermal characterization of new dumbbell-shaped cyclopentyl-substituted POSSs linked by aliphatic and aromatic bridges. J Therm Anal Calorim 121:1039–1048CrossRefGoogle Scholar
  95. 95.
    Blanco I, Abate L, Bottino FA, Bottino P (2014) Thermal behaviour of a series of novel aliphatic bridged polyhedral oligomeric silsesquioxanes (POSSs)/polystyrene (PS) nanocomposites: the influence of the bridge length on the resistance to thermal degradation. Polym Degrad Stabil 102:132–137CrossRefGoogle Scholar
  96. 96.
    Blanco I, Siracusa V (2013) Kinetic study of the thermal and thermo-oxidative degradations of polylactide-modified films for food packaging. J Therm Anal Calorim 112(3):1171–1177CrossRefGoogle Scholar
  97. 97.
    Wang L, Ma W, Gross RA, McCarthy SP (1998) Reactive compatibilization of biodegradable blends of poly (lactic acid) and poly(ε-caprolactone). Polym Degrad Stabil 59:161–168CrossRefGoogle Scholar
  98. 98.
    Sarazin P, Favis BD (2003) Morphology control in co-continuous poly(l-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(l-lactide) materials. Biomacromol 4:1669–1679CrossRefGoogle Scholar
  99. 99.
    Ray SS, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem Mater 15:1456–1465CrossRefGoogle Scholar
  100. 100.
    Chen G-X, Kim H-S, Park BH, Yoon J-S (2005) Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(l-lactic acid). J Phys Chem B 109:22237–22243PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Zou J, Chen X, Jiang XB, Zhang J, Guo YB, Huang FR (2011) Poly(l-lactide) nanocomposites containing octaglycidylether polyhedral oligomeric silsesquioxane: Preparation, structure and properties. eXPRESS Polym Lett 5(8):662–673CrossRefGoogle Scholar
  102. 102.
    Yu J, Qiu Z (2011) Preparation and properties of biodegradable poly(l-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces 3:890–897PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Xuan S, Hu Y, Song L, Wang X, Yang H, Lu H (2012) Synergistic effect of polyhedral oligomeric silsesquioxane on the flame retardancy and thermal degradation of intumescent flame retardant polylactide. J Combust Sci Technol 184:456–468CrossRefGoogle Scholar
  104. 104.
    Kodal M, Sirin H, Ozkoc G (2014) Effects of screw speed on the properties of plasticized PLA/POSS composites. AIP Conf Proc 1593:420–423CrossRefGoogle Scholar
  105. 105.
    Monticelli O, Putti M, Gardella L, Cavallo D, Basso A, Prato M, Nitti S (2014) New stereocomplex PLA-based fibers: effect of POSS on polymer functionalization and properties. Macromolecules 47:4718–4727CrossRefGoogle Scholar
  106. 106.
    Gardella L, Colonna S, Fina A, Monticelli O (2014) On novel bio-hybrid system based on PLA and POSS. Colloid Polym Sci 292:3271–3278CrossRefGoogle Scholar
  107. 107.
    Wang R, Wang S, Zhang Y (2009) Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J Appl Polym Sci 113:3095–3102CrossRefGoogle Scholar
  108. 108.
    Pramoda KP, Koh CB, Hazrat H, He CB (2014) Performance enhancement of polylactide by nanoblending with POSS and graphene oxide. Polym Compos 35:118–126CrossRefGoogle Scholar
  109. 109.
    Sirin H, Kodal M, Ozkoc G (2014) The influence of POSS type on the properties of PLA. Polym Compos 37(5):1497–1506CrossRefGoogle Scholar
  110. 110.
    Wu J, Haddad TS, Mather PT (2009) Vertex group effects in entangled polystyrene–polyhedral oligosilsesquioxane (POSS) copolymers. Macromolecules 42(4):1142–1152CrossRefGoogle Scholar
  111. 111.
    Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ohya H, Kudryavtsev VV, Semenova SI (eds) (1996) Polyimide membranes—applications, fabrications, and properties. Kodansha Ltd., TokyoGoogle Scholar
  113. 113.
    Buhler KU (1978) Spezialplaste. Academie-Verlag, Berlin [in German, Chap. 7.1.11.1]Google Scholar
  114. 114.
    Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974CrossRefGoogle Scholar
  115. 115.
    Georgiev A, Dimov D, Spassova E, Assa J, Dineff P, Danev G (2012) Chemical and physical properties of polyimides: biomedical and engineering applications. In: Abadie MJM (eds) High performance polymers—polyimides based—from chemistry to applications. IntechGoogle Scholar
  116. 116.
    Cicala G, Ognibene G, Portuesi S, Blanco I, Rapisarda M, Pergolizzi E, Recca G (2018) Comparison of Ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends. Materials 11(2):285–299PubMedCentralCrossRefPubMedGoogle Scholar
  117. 117.
    Sena SK, Banerjee S (2012) A novel structural polyimide material with phosphorus and POSS synergistic for atomic oxygen resistance. RSC Adv 2:6274–6289CrossRefGoogle Scholar
  118. 118.
    Verker R, Grossman E, Gouzman I, Noam E (2007) Residual stress effect on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen. Polymer 48(1):19–24CrossRefGoogle Scholar
  119. 119.
    Shimamura H, Nakamura T (2009) Mechanical properties degradation of polyimide films irradiated by atomic oxygen. Polym Degrad Stabil 94(9):1389–1396CrossRefGoogle Scholar
  120. 120.
    Gilman J, Schlitzer DS, Lichtenhan JD (1996) Low earth orbit resistant siloxane copolymers. J Appl Polym Sci 60(4):591–596CrossRefGoogle Scholar
  121. 121.
    Reddy MR, Srinivasamurthy N, Agrawal BL (1993) Atomic oxygen protective coatings for Kapton film: a review. Surf Coat Tech 58(1):1–17CrossRefGoogle Scholar
  122. 122.
    Song G, Li X, Jiang Q, Mu J, Jiang Z (2015) A novel structural polyimide material with phosphorus and POSS synergistic for atomic oxygen resistance. RSC Adv 5:11980–11988CrossRefGoogle Scholar
  123. 123.
    Li X, Hao J, Jiang Q, Mu J, Jiang Z (2015) Phosphorus-containing polyhedral oligomeric silsesquioxane/polyimides hybrid materials with low dielectric constant and low coefficients of thermal expansion. J Appl Polym Sci 132(39):42611–42617Google Scholar
  124. 124.
    Atar N, Grossman E, Gouzman I, Bolker A, Murray VJ, Marshall BC, Qian M, Minton TK, Hanein Y (2015) Atomic-oxygen-durable and electrically-conductive CNT-POSS polyimide flexible films for space applications. ACS Appl Mater Interfaces 7:12047–12056PubMedCrossRefGoogle Scholar
  125. 125.
    van der Pauw LJ (1958) A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res Rep 13:1–9Google Scholar
  126. 126.
    Huang J-C, He C-B, Xiao Y, Mya KY, Dai J, Siow YP (2003) Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties. Polymer 44:4491–4499CrossRefGoogle Scholar
  127. 127.
    Govindaraj B, Sundararajan P, Sarojadevi M (2012) Synthesis and characterization of polyimide/ polyhedral oligomeric silsesquioxane nanocomposites containing quinolyl moiety. Polym Int 61:1344–1352CrossRefGoogle Scholar
  128. 128.
    Pan H, Zhang Y, Pu H, Chang Z (2014) Organic-inorganic hybrid proton exchange membrane based on polyhedral oligomeric silsesquioxanes and sulfonated polyimides containing benzimidazole. J Power Sources 63:195–202CrossRefGoogle Scholar
  129. 129.
    Liu N, Wei K, Wang L, Zheng S (2016) Organic-inorganic polyimides with double decker silsesquioxane in the main chains. Polym Chem 7:1158–1167CrossRefGoogle Scholar
  130. 130.
    Qiu J, Xu S, Liu N, Wei K, Li L, Zheng S (2018) Organic–inorganic polyimide nanocomposites containing a tetrafunctional polyhedral oligomeric silsesquioxane amine: synthesis, morphology and thermomechanical properties. Polym Int 67:301–312CrossRefGoogle Scholar
  131. 131.
    Jung Y, Byun S, Park S, Lee H (2014) Polyimide-organosilicate hybrids with improved thermal and optical properties. ACS Appl Mater Interfaces 6:6054–6061PubMedCrossRefGoogle Scholar
  132. 132.
    Tu Y-C, Suppes GJ, Hsieh F-H (2009) Thermal and mechanical behavior of flexible polyurethane-molded plastic films and water-blown foams with epoxidized soybean oil. J Appl Polym Sci 111:1311–1317CrossRefGoogle Scholar
  133. 133.
    Byczyński Ł, Dutkiewicz M, Januszewski R (2017) Thermal behaviour and flame retardancy of polyurethane high-solid coatings modified with hexakis(2,3-epoxypropyl)cyclotriphosphazene. Prog Org Coat 108:51–58CrossRefGoogle Scholar
  134. 134.
    Klempner D, Frisch KC (1991) Handbook of polymeric foams and foam technology. Oxford University Press, New YorkGoogle Scholar
  135. 135.
    Wirpsza Z (1993) Polyurethanes: chemistry, technology, and applications. Ellis Horwood, New YorkGoogle Scholar
  136. 136.
    Randall D, Lee S (2002) The polyurethanes book. Wiley, New YorkGoogle Scholar
  137. 137.
    Król P (2007) Synthesis methods chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 52:915–1015CrossRefGoogle Scholar
  138. 138.
    Kang SK, Cho IS, Kim SB (2008) Preparation and characterization of antimicrobial polyurethane foam modified by urushiol and cardanol. Elastomer 43:124Google Scholar
  139. 139.
    Zammarano M, Kramer RH, Harris R, Ohlemiller TJ, Shields JR, Rahatekar SS, Lacerda S, Gilman JW (2008) Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym Adv Tech 19:588–595CrossRefGoogle Scholar
  140. 140.
    Liu H, Zheng S (2005) Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol Rapid Commun 26:196–200CrossRefGoogle Scholar
  141. 141.
    Zuo M, Chi TT (1999) Preparation and characterization of poly(urethane-imide) films prepared from reactive polyimide and polyurethane prepolymer. Polymer 40:5153–5160CrossRefGoogle Scholar
  142. 142.
    Liu Y, Ni Y, Zheng S (2006) Polyurethane networks modified with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Macromol Chem Phys 207:1842–1851CrossRefGoogle Scholar
  143. 143.
    Nanda AK, Wicks DA, Madbouly SA, Otaigbe JU (2006) Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules 39:7037–7043CrossRefGoogle Scholar
  144. 144.
    Madbouly SA, Otaigbe JU, Nanda AK, Wicks DA (2007) Rheological behavior of POSS/polyurethane-urea nanocomposite films prepared by homogeneous solution polymerization in aqueous dispersions. Macromolecules 40:4982–4991CrossRefGoogle Scholar
  145. 145.
    Zhang S, Zou Q, Wu L (2006) Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromol Mater Eng 291:895–901CrossRefGoogle Scholar
  146. 146.
    Lewicki JP, Pielichowski K, De La Croix T, Janowski B, Todd D, Liggat JJ (2010) Thermal degradation studies of polyurethane/POSS nanohybrid elastomers. Polym Degrad Stabil 95:1099–1105CrossRefGoogle Scholar
  147. 147.
    Rodante F, Vecchio S, Tomassetti M (2002) Kinetic analysis of thermal decomposition for penicillin sodium salts—model-fitting and model-free methods. J Pharm Biomed Anal 29:1031–1043PubMedCrossRefGoogle Scholar
  148. 148.
    Blanco I, Abate L, Antonelli ML, Bottino FA (2013) The regression of isothermal thermogravimetric data to evaluate degradation Ea values of polymers: a comparison with literature methods and an evaluation of lifetime predictions reliability. Part II. Polym Degrad Stabil 98:2291–2296CrossRefGoogle Scholar
  149. 149.
    Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886CrossRefGoogle Scholar
  150. 150.
    Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328CrossRefGoogle Scholar
  151. 151.
    Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C 6:183–195CrossRefGoogle Scholar
  152. 152.
    Janowski B, Pielichowski K (2016) A kinetic analysis of the thermo-oxidative degradation of PU/POSS nanohybrid elastomers. Silicon 8:65–74CrossRefGoogle Scholar
  153. 153.
    Pagacz J, Hebda E, Michałowski S, Ozimek J, Sternik D, Pielichowski K (2016) Polyurethane foams chemically reinforced with POSS—Thermal degradation studies. Thermochim Acta 642:95–104CrossRefGoogle Scholar
  154. 154.
    Huang J, Jiang P, Li X, Huang Y (2016) Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J Mater Sci 51:2443–2452CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering and Architecture and INSTM UdRUniversity of CataniaCataniaItaly

Personalised recommendations