Advertisement

Synthesis Routes of POSS

  • Enrico BoccaleriEmail author
  • Fabio Carniato
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The study of the chemistry of materials containing Si–O bonds was in the past mainly applied to both inorganic silica and minerals or to organic silicones field in which the R2SiO unit dominates. However, in the last decade, the field of silsesquioxane chemistry with general composition RSiO3/2 has grown dramatically and many structures have been proposed in the literature. The idea of this chapter is to make an overview of the main synthetic approaches used to prepare completely and partially polyhedral oligomeric silsesquioxanes (POSS), highlighting the advantages and the weakness of each procedure. A brief description of the characterization techniques used to analyze the physicochemical properties of POSS was also carried out.

Keywords

Polyhedral oligomeric silsesquioxanes POSS synthesis Close-cage POSS Open-cage POSS Cleavage Corner capping Hydrosilylation Functionalization 

References

  1. 1.
    Scott DW (1946) Thermal rearrangement of branched-chain methylpolysiloxanes. J Am Chem Soc 68:356CrossRefGoogle Scholar
  2. 2.
    Barry J, Daudt WH, Domicone JJ, Gilkey JW (1955) Crystalline organosilsesquioxanes. J Am Chem Soc 77:4248CrossRefGoogle Scholar
  3. 3.
    Feher FJ, Soulivong D, Lewis GT (1997) Facile framework cleavage reactions of a completely condensed silsesquioxane framework. J Am Chem Soc 119:11323CrossRefGoogle Scholar
  4. 4.
    Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 10:2526Google Scholar
  5. 5.
    Feher, FJ Soulivong D, Eklund AG (1998) Controlled cleavage of R8Si8O12 frameworks: a revolutionary new method for manufacturing precursors to hybrid inorganic–organic materials. Chem Commun 13:399Google Scholar
  6. 6.
    Feher FJ, Terroba R, Ziller JW (1999) A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chem Commun 22:2309Google Scholar
  7. 7.
    Voronkov MG, Lavrent’yev VI (1982) Top Curr Chem 102:199Google Scholar
  8. 8.
    Brown JF, Vogt LH (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87:4313CrossRefGoogle Scholar
  9. 9.
    Sprung MM, Guenther FO (1955) The partial hydrolysis of methyltriethoxysilane. J Am Chem Soc 77:3990CrossRefGoogle Scholar
  10. 10.
    Sprung MM, Guenther FO (1955) The partial hydrolysis of ethyltriethoxysilane. J Am Chem Soc 77:3996CrossRefGoogle Scholar
  11. 11.
    Kudo T, Gordon MS (1998) Theoretical studies of the mechanism for the synthesis of silsesquioxanes. 1. Hydrolysis and initial condensation. J Am Chem Soc 120:11432CrossRefGoogle Scholar
  12. 12.
    Kudo T, Gordon MS (2000) Theoretical studies of the mechanism for the synthesis of silsesquioxanes. 2. Cyclosiloxanes (D3 and D4). J Phys Chem A 104:4058CrossRefGoogle Scholar
  13. 13.
    Jug K, Wichmann D (2000) MSINDO study of large silsesquioxanes. J Comp Chem 21:1549CrossRefGoogle Scholar
  14. 14.
    Vogt LH, Brown JF (1963) Crystalline methylsilsesquioxanes. Inorg Chem 2:189CrossRefGoogle Scholar
  15. 15.
    Frye CL, Collins WT (1970) Oligomeric silsesquioxanes, (HSiO3/2)n. J Am Chem Soc 92:5586Google Scholar
  16. 16.
    Andrianov KA (1968) The methods of elementoorganic chemistry. Naura, Moscow, p 589Google Scholar
  17. 17.
    Pescarmona PP, van der Waal JC, Maxwell IE, Maschmeyer T (2001) A new, efficient route to titanium–silsesquioxane epoxidation catalysts developed by using high‐speed experimentation techniques. Angew Chem Int Ed 40:740CrossRefGoogle Scholar
  18. 18.
    Brinker C, Scherer G (2013) Sol-gel science—the physics and chemistry of sol-gel processing, 1st edn. Academic Press, BostonGoogle Scholar
  19. 19.
    Agasksar PA (1991) New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15. Inorg Chem 30:2707Google Scholar
  20. 20.
    Wiberg E, Simmler W (1956) Silanole. I. Stabilität und Kondensationsverhalten von Organosilandiolen. Z Anorg Allg Chem 283:401Google Scholar
  21. 21.
    Oisson K (1958) An Improved Method to Prepare Octa-(alkylsilse-squioxanes)(RSi)8O12. Arkiv Kemi 13:367Google Scholar
  22. 22.
    Sprung MM, Guenther FO (1958) Copolymers of butadiene and unsaturated acids: crosslinking by metal oxides. J Polym Sci 28:17Google Scholar
  23. 23.
    Andrianov KA, Izmailor BA (1976) Hydrolytic polycondensation of higher alkyltrichlorosilanes in concentrated hydrochloric acid. Zh Obshch Khim 46:329Google Scholar
  24. 24.
    Brown F, Vogt LH, Prescott PI (1964) Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc 86:1120CrossRefGoogle Scholar
  25. 25.
    Olsson K, Gronwall C (1961) On octa-(arylsilsesquioxanes),(ArSi)8O12. 1. phenyl, 4-tolyl, and 1-naphthyl compounds. Arkiv Kemi 17:529Google Scholar
  26. 26.
    Feher FJ, Newman DA, Walzer JF (1989) Silsesquioxanes as models for silica surfaces. J Am Chem Soc 111:1741CrossRefGoogle Scholar
  27. 27.
    Feher FJ (1986) Polyhedral oligometallasilsesquioxanes (POMSS) as models for silica-supported transition-metal catalysts. J Am Chem Soc 108:3850Google Scholar
  28. 28.
    Feher FJ (1989) Polyhedral aluminosilsesquioxanes: soluble organic analogs of aluminosilicates. J Am Chem Soc 111:7288CrossRefGoogle Scholar
  29. 29.
    Gieβmann S, Fischer A, Edelmann FT (1982) Silyl‐functionalized silsesquioxanes: new building blocks for larger Si–O‐assemblies, including the first Si–Si‐bonded silsesquioxanes. Z Anorg Allg Chem 2004:630Google Scholar
  30. 30.
    Feher FJ, Walzer JF (1991) Synthesis and characterization of vanadium-containing silsesquioxanes. Inorg Chem 30:1689; Field LD, Lindall CM, Maschmeyer T, Masters AF (1994) The synthesis and characterization of decaphenyltitanocene dichloride, [Ti(η5-C5Ph5)2Cl2], and of [Ti(η5-C5Ph5)((c-C6H11)7Si7O12)], the first pentaphenylcyclopentadienyl polyhedral oligosilsesquioxane. Aust J Chem 47:1127Google Scholar
  31. 31.
    Carniato F, Boccaleri E, Marchese L (2008) A versatile route to bifunctionalized silsesquioxane (POSS): synthesis and characterisation of Ti-containing aminopropylisobutyl-POSS. Dalton Trans 1:36Google Scholar
  32. 32.
    Olivero F, Renò F, Carniato F, Rizzi M, Cannas M, Marchese L (2012) A novel luminescent bifunctional POSS as a molecular platform for biomedical applications. Dalton Trans 41:7467CrossRefGoogle Scholar
  33. 33.
    Cordes BD, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081CrossRefGoogle Scholar
  34. 34.
    Meguro S, Yamahiro M, Watanabe K (2007) Chem Abstr 146:184612; Jpn Kokai Tokkyo Koho JP 2007015977, 2007Google Scholar
  35. 35.
    Fu BX, Lee A, Haddad TS (2004) Styrene−butadiene−styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 37:5211CrossRefGoogle Scholar
  36. 36.
    Pan G, Mark JE, Schaefer DW (2003) Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. J Polym Sci Part B: Polym Phys 41:3314CrossRefGoogle Scholar
  37. 37.
    Haseba Y (2004) Chem Abstr 140:261477; Jpn Kokai Tokkyo Koho JP 2004083757, 2004Google Scholar
  38. 38.
    Goto R, Shimojima A, Kuge H, Kuroda K (2008) A hybrid mesoporous material with uniform distribution of carboxy groups assembled from a cubic siloxane-based precursor. Chem Commun 46:6152Google Scholar
  39. 39.
    Shimojima A, Goto R, Atsumi N, Kuroda K (2008) Self‐assembly of alkyl‐substituted cubic siloxane cages into ordered hybrid materials. Chem Eur J 14:8500CrossRefGoogle Scholar
  40. 40.
    Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233CrossRefGoogle Scholar
  41. 41.
    Iwamura T, Adachi K, Chujo Y (2010) Simple and rapid eco-friendly synthesis of cubic octamethylsilsesquioxane using microwave irradiation. Chem Lett 39:354CrossRefGoogle Scholar
  42. 42.
    Penso I, Cechinatto EA, Machado G, Luvison C, Wanke CH, Bianchi O, Soares MRF (2015) Preparation and characterization of polyhedral oligomeric silsesquioxane (POSS) using domestic microwave oven. J Non-Cryst Solids 428:82CrossRefGoogle Scholar
  43. 43.
    Janowski B, Pielichowski K (2008) Microwave-assisted synthesis of cyclopentyltrisilanol (c-C5H9)7Si7O9(OH)3. J Organomet Chem 693:905Google Scholar
  44. 44.
    Marciniec B, Dutkiewicz M, Maciejewski H, Kubicki M (2008) New, effective method of synthesis and structural characterization of octakis(3-chloropropyl)octasilsesquioxane. Organometallics 27:793–794CrossRefGoogle Scholar
  45. 45.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004CrossRefGoogle Scholar
  46. 46.
    Li Y, Dong X, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang W, Cheng SZD (2017) Polyhedral oligomeric silsesquioxane meets “click” chemistry: rational design and facile preparation of functional hybrid materials. Polymer 125:303CrossRefGoogle Scholar
  47. 47.
    Xue L, Li L, Feng S, Liu H (2015) A facile route to multifunctional cage silsesquioxanes via the photochemical thiol–ene reaction. J Organomet Chem 783:49CrossRefGoogle Scholar
  48. 48.
    Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540CrossRefGoogle Scholar
  49. 49.
    Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1:17CrossRefGoogle Scholar
  50. 50.
    Dondoni A (2008) The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. Angew Chem Int Ed 47:8995CrossRefGoogle Scholar
  51. 51.
    Gao YJ, Eguchi A, Kakehi K, Lee YC (2004) Efficient preparation of glycoclusters from silsesquioxanes. Org Lett 6:3457CrossRefGoogle Scholar
  52. 52.
    Rozga-Wijas K, Chojnowski J (2012) Synthesis of new polyfunctional cage oligosilsesquioxanes and cyclic siloxanes by thiol-ene addition. J Inorg Organomet Polym 22:588CrossRefGoogle Scholar
  53. 53.
    Xu JW, Li X, Cho CM, Toh CL, Shen L, Mya KY, Lu XH, He CB (2009) Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends. J Mater Chem 19:4740CrossRefGoogle Scholar
  54. 54.
    Li LG, Xue L, Feng SY, Liu HZ (2013) Functionalization of monovinyl substituted octasilsesquioxane via photochemical thiol-ene reaction. Inorg Chim Acta 407:269CrossRefGoogle Scholar
  55. 55.
    Wu Y, Li LG, Feng SY, Liu HZ (2013) Hybrid nanocomposites based on novolac resin and octa(phenethyl) polyhedral oligomeric silsesquioxanes (POSS): miscibility, specific interactions and thermomechanical properties. Polym Bull 70:3261CrossRefGoogle Scholar
  56. 56.
    Li Y, Su H, Feng X, Wang Z, Guo K, Wesdemiotis C, Fu Q, Cheng SZD, Zhang W (2014) Thiol-Michael “click” chemistry: another efficient tool for head functionalization of giant surfactants. Polym Chem 5:6151CrossRefGoogle Scholar
  57. 57.
    Kaźmierczak J, Kuciński K, Hreczycho G (2017) Highly efficient catalytic route for the synthesis of functionalized silsesquioxanes. Inorg Chem 56(15):9337CrossRefGoogle Scholar
  58. 58.
    Schäfer S, Kickelbick G (2017) Simple and high yield access to octafunctional azido, amine and urea group bearing cubic spherosilicates. Dalton Trans 46(1):221CrossRefGoogle Scholar
  59. 59.
    Tsukada S, Sekiguchi Y, Takai S, Abe Y, Gunji T (2015) Preparation of POSS derivatives by the dehydrogenative condensation of T8H with alcohols. J Ceram Soc Jpn 123(1441):739Google Scholar
  60. 60.
    Carniato F, Boccaleri E, Marchese L, Fina A, Tabuani D, Camino G (2007) Synthesis and characterisation of metal Isobutylsilsesquioxanes and their role as inorganic–organic nanoadditives for enhancing polymer thermal stability. Eur J Inorg Chem 4:585CrossRefGoogle Scholar
  61. 61.
    Li Q, Zhou Y, Hang X, Deng S, Huang F, Du L, Li Z (2008) Synthesis and characterization of a novel arylacetylene oligomer containing POSS units in main chains. Eur Polym J 44:2538CrossRefGoogle Scholar
  62. 62.
    Desmartin Chomel A, Dempsey P, Latournerie J, Hourlier-Bahloul D, Jayasooriya UA (2005) Gel to glass transformation of methyltriethoxysilane:  a silicon oxycarbide glass precursor investigated using vibrational spectroscopy. Chem Mater 17:4468CrossRefGoogle Scholar
  63. 63.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409Google Scholar
  64. 64.
    Croce G, Carniato F, Milanesio M, Boccaleri E, Paul G, van Beek W, Marchese L (2009) Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study. Phys Chem Chem Phys 11:10087CrossRefGoogle Scholar
  65. 65.
    Marchesi S, Carniato F, Boccaleri E (2014) Synthesis and characterisation of a novel Europium(III)-containing heptaisobutyl-POSS. New J Chem 38:2480CrossRefGoogle Scholar
  66. 66.
    Marchesi S, Carniato F, Palin L, Boccaleri E (2015) POSS as building-blocks for the preparation of polysilsesquioxanes through an innovative synthetic approach. Dalton Trans 44:2042CrossRefGoogle Scholar
  67. 67.
    Owens TM, Nicholson KT, Fosnacht DR, Orr BG, Banaszak Holl MM (2006) Formation of mixed monolayers of silsesquioxanes and alkylsilanes on gold. Langmuir 22:9619CrossRefGoogle Scholar
  68. 68.
    Bolln C, Tsuchida A, Frey H, Mulhaupt R (1997) Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater 9:1475CrossRefGoogle Scholar
  69. 69.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440:36CrossRefGoogle Scholar
  70. 70.
    Fina A, Tabuani D, Frache A, Boccaleri E, Camino G (2005) In: Le Bras M, Wilkie C, Bourbigot S (eds) Fire retardancy of polymers: new applications of mineral fillers. Royal Society of Chemistry, Cambridge, UK, pp 202–220Google Scholar
  71. 71.
    Calzaferri G, Hoffmann R (1991) The symmetrical octasilasesquioxanes X8Si8O12: electronic structure and reactivity. J Chem Soc Dalton Trans S:917Google Scholar
  72. 72.
    Loboda MJ, Toksey GA (1998) Understanding hydrogen silsesquioxane-based dielectric film processing. Solid State Technol 41:99Google Scholar
  73. 73.
    Liou HC, Pretzer J (1998) Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films. Thin Film Solids 335:186CrossRefGoogle Scholar
  74. 74.
    Siew YW, Sarkar G, Hu X, Hui J, See A, Chua CT (2000) Thermal curing of hydrogen silsesquioxane. J Electrocem Soc 147:335CrossRefGoogle Scholar
  75. 75.
    Yang CC, Chen WC (2002) The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing. J Mater Chem 12(4):1138CrossRefGoogle Scholar
  76. 76.
    Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS−siloxane copolymers. Chem. Mater 8:1250CrossRefGoogle Scholar
  77. 77.
    Zeng J, Bennett C, Jarrett WL, Iyer S, Kumar S, Mathias LJ, Schiraldi DA (2005) Structural changes in trisilanol POSS during nanocomposite melt processing. Compos Interfaces 11:673CrossRefGoogle Scholar
  78. 78.
    Hybrid plastics website: https://hybridplastics.com

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte OrientaleAlessandriaItaly
  2. 2.Nova Res S.r.l.NovaraItaly

Personalised recommendations