Skip to main content

Synthesis Routes of POSS

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The study of the chemistry of materials containing Si–O bonds was in the past mainly applied to both inorganic silica and minerals or to organic silicones field in which the R2SiO unit dominates. However, in the last decade, the field of silsesquioxane chemistry with general composition RSiO3/2 has grown dramatically and many structures have been proposed in the literature. The idea of this chapter is to make an overview of the main synthetic approaches used to prepare completely and partially polyhedral oligomeric silsesquioxanes (POSS), highlighting the advantages and the weakness of each procedure. A brief description of the characterization techniques used to analyze the physicochemical properties of POSS was also carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scott DW (1946) Thermal rearrangement of branched-chain methylpolysiloxanes. J Am Chem Soc 68:356

    Article  CAS  Google Scholar 

  2. Barry J, Daudt WH, Domicone JJ, Gilkey JW (1955) Crystalline organosilsesquioxanes. J Am Chem Soc 77:4248

    Article  CAS  Google Scholar 

  3. Feher FJ, Soulivong D, Lewis GT (1997) Facile framework cleavage reactions of a completely condensed silsesquioxane framework. J Am Chem Soc 119:11323

    Article  CAS  Google Scholar 

  4. Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW (1991) Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 10:2526

    Google Scholar 

  5. Feher, FJ Soulivong D, Eklund AG (1998) Controlled cleavage of R8Si8O12 frameworks: a revolutionary new method for manufacturing precursors to hybrid inorganic–organic materials. Chem Commun 13:399

    Google Scholar 

  6. Feher FJ, Terroba R, Ziller JW (1999) A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chem Commun 22:2309

    Google Scholar 

  7. Voronkov MG, Lavrent’yev VI (1982) Top Curr Chem 102:199

    Google Scholar 

  8. Brown JF, Vogt LH (1965) The polycondensation of cyclohexylsilanetriol. J Am Chem Soc 87:4313

    Article  CAS  Google Scholar 

  9. Sprung MM, Guenther FO (1955) The partial hydrolysis of methyltriethoxysilane. J Am Chem Soc 77:3990

    Article  CAS  Google Scholar 

  10. Sprung MM, Guenther FO (1955) The partial hydrolysis of ethyltriethoxysilane. J Am Chem Soc 77:3996

    Article  CAS  Google Scholar 

  11. Kudo T, Gordon MS (1998) Theoretical studies of the mechanism for the synthesis of silsesquioxanes. 1. Hydrolysis and initial condensation. J Am Chem Soc 120:11432

    Article  CAS  Google Scholar 

  12. Kudo T, Gordon MS (2000) Theoretical studies of the mechanism for the synthesis of silsesquioxanes. 2. Cyclosiloxanes (D3 and D4). J Phys Chem A 104:4058

    Article  CAS  Google Scholar 

  13. Jug K, Wichmann D (2000) MSINDO study of large silsesquioxanes. J Comp Chem 21:1549

    Article  CAS  Google Scholar 

  14. Vogt LH, Brown JF (1963) Crystalline methylsilsesquioxanes. Inorg Chem 2:189

    Article  CAS  Google Scholar 

  15. Frye CL, Collins WT (1970) Oligomeric silsesquioxanes, (HSiO3/2)n. J Am Chem Soc 92:5586

    Google Scholar 

  16. Andrianov KA (1968) The methods of elementoorganic chemistry. Naura, Moscow, p 589

    Google Scholar 

  17. Pescarmona PP, van der Waal JC, Maxwell IE, Maschmeyer T (2001) A new, efficient route to titanium–silsesquioxane epoxidation catalysts developed by using high‐speed experimentation techniques. Angew Chem Int Ed 40:740

    Article  CAS  Google Scholar 

  18. Brinker C, Scherer G (2013) Sol-gel science—the physics and chemistry of sol-gel processing, 1st edn. Academic Press, Boston

    Google Scholar 

  19. Agasksar PA (1991) New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15. Inorg Chem 30:2707

    Google Scholar 

  20. Wiberg E, Simmler W (1956) Silanole. I. Stabilität und Kondensationsverhalten von Organosilandiolen. Z Anorg Allg Chem 283:401

    Google Scholar 

  21. Oisson K (1958) An Improved Method to Prepare Octa-(alkylsilse-squioxanes)(RSi)8O12. Arkiv Kemi 13:367

    Google Scholar 

  22. Sprung MM, Guenther FO (1958) Copolymers of butadiene and unsaturated acids: crosslinking by metal oxides. J Polym Sci 28:17

    Google Scholar 

  23. Andrianov KA, Izmailor BA (1976) Hydrolytic polycondensation of higher alkyltrichlorosilanes in concentrated hydrochloric acid. Zh Obshch Khim 46:329

    Google Scholar 

  24. Brown F, Vogt LH, Prescott PI (1964) Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. J Am Chem Soc 86:1120

    Article  CAS  Google Scholar 

  25. Olsson K, Gronwall C (1961) On octa-(arylsilsesquioxanes),(ArSi)8O12. 1. phenyl, 4-tolyl, and 1-naphthyl compounds. Arkiv Kemi 17:529

    Google Scholar 

  26. Feher FJ, Newman DA, Walzer JF (1989) Silsesquioxanes as models for silica surfaces. J Am Chem Soc 111:1741

    Article  CAS  Google Scholar 

  27. Feher FJ (1986) Polyhedral oligometallasilsesquioxanes (POMSS) as models for silica-supported transition-metal catalysts. J Am Chem Soc 108:3850

    Google Scholar 

  28. Feher FJ (1989) Polyhedral aluminosilsesquioxanes: soluble organic analogs of aluminosilicates. J Am Chem Soc 111:7288

    Article  CAS  Google Scholar 

  29. Gieβmann S, Fischer A, Edelmann FT (1982) Silyl‐functionalized silsesquioxanes: new building blocks for larger Si–O‐assemblies, including the first Si–Si‐bonded silsesquioxanes. Z Anorg Allg Chem 2004:630

    Google Scholar 

  30. Feher FJ, Walzer JF (1991) Synthesis and characterization of vanadium-containing silsesquioxanes. Inorg Chem 30:1689; Field LD, Lindall CM, Maschmeyer T, Masters AF (1994) The synthesis and characterization of decaphenyltitanocene dichloride, [Ti(η5-C5Ph5)2Cl2], and of [Ti(η5-C5Ph5)((c-C6H11)7Si7O12)], the first pentaphenylcyclopentadienyl polyhedral oligosilsesquioxane. Aust J Chem 47:1127

    Google Scholar 

  31. Carniato F, Boccaleri E, Marchese L (2008) A versatile route to bifunctionalized silsesquioxane (POSS): synthesis and characterisation of Ti-containing aminopropylisobutyl-POSS. Dalton Trans 1:36

    Google Scholar 

  32. Olivero F, Renò F, Carniato F, Rizzi M, Cannas M, Marchese L (2012) A novel luminescent bifunctional POSS as a molecular platform for biomedical applications. Dalton Trans 41:7467

    Article  CAS  Google Scholar 

  33. Cordes BD, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081

    Article  CAS  Google Scholar 

  34. Meguro S, Yamahiro M, Watanabe K (2007) Chem Abstr 146:184612; Jpn Kokai Tokkyo Koho JP 2007015977, 2007

    Google Scholar 

  35. Fu BX, Lee A, Haddad TS (2004) Styrene−butadiene−styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 37:5211

    Article  CAS  Google Scholar 

  36. Pan G, Mark JE, Schaefer DW (2003) Synthesis and characterization of fillers of controlled structure based on polyhedral oligomeric silsesquioxane cages and their use in reinforcing siloxane elastomers. J Polym Sci Part B: Polym Phys 41:3314

    Article  CAS  Google Scholar 

  37. Haseba Y (2004) Chem Abstr 140:261477; Jpn Kokai Tokkyo Koho JP 2004083757, 2004

    Google Scholar 

  38. Goto R, Shimojima A, Kuge H, Kuroda K (2008) A hybrid mesoporous material with uniform distribution of carboxy groups assembled from a cubic siloxane-based precursor. Chem Commun 46:6152

    Google Scholar 

  39. Shimojima A, Goto R, Atsumi N, Kuroda K (2008) Self‐assembly of alkyl‐substituted cubic siloxane cages into ordered hybrid materials. Chem Eur J 14:8500

    Article  CAS  Google Scholar 

  40. Galema SA (1997) Microwave chemistry. Chem Soc Rev 26:233

    Article  CAS  Google Scholar 

  41. Iwamura T, Adachi K, Chujo Y (2010) Simple and rapid eco-friendly synthesis of cubic octamethylsilsesquioxane using microwave irradiation. Chem Lett 39:354

    Article  CAS  Google Scholar 

  42. Penso I, Cechinatto EA, Machado G, Luvison C, Wanke CH, Bianchi O, Soares MRF (2015) Preparation and characterization of polyhedral oligomeric silsesquioxane (POSS) using domestic microwave oven. J Non-Cryst Solids 428:82

    Article  CAS  Google Scholar 

  43. Janowski B, Pielichowski K (2008) Microwave-assisted synthesis of cyclopentyltrisilanol (c-C5H9)7Si7O9(OH)3. J Organomet Chem 693:905

    Google Scholar 

  44. Marciniec B, Dutkiewicz M, Maciejewski H, Kubicki M (2008) New, effective method of synthesis and structural characterization of octakis(3-chloropropyl)octasilsesquioxane. Organometallics 27:793–794

    Article  CAS  Google Scholar 

  45. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004

    Article  CAS  Google Scholar 

  46. Li Y, Dong X, Zou Y, Wang Z, Yue K, Huang M, Liu H, Feng X, Lin Z, Zhang W, Zhang W, Cheng SZD (2017) Polyhedral oligomeric silsesquioxane meets “click” chemistry: rational design and facile preparation of functional hybrid materials. Polymer 125:303

    Article  CAS  Google Scholar 

  47. Xue L, Li L, Feng S, Liu H (2015) A facile route to multifunctional cage silsesquioxanes via the photochemical thiol–ene reaction. J Organomet Chem 783:49

    Article  CAS  Google Scholar 

  48. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540

    Article  CAS  Google Scholar 

  49. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1:17

    Article  CAS  Google Scholar 

  50. Dondoni A (2008) The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. Angew Chem Int Ed 47:8995

    Article  CAS  Google Scholar 

  51. Gao YJ, Eguchi A, Kakehi K, Lee YC (2004) Efficient preparation of glycoclusters from silsesquioxanes. Org Lett 6:3457

    Article  CAS  Google Scholar 

  52. Rozga-Wijas K, Chojnowski J (2012) Synthesis of new polyfunctional cage oligosilsesquioxanes and cyclic siloxanes by thiol-ene addition. J Inorg Organomet Polym 22:588

    Article  Google Scholar 

  53. Xu JW, Li X, Cho CM, Toh CL, Shen L, Mya KY, Lu XH, He CB (2009) Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends. J Mater Chem 19:4740

    Article  CAS  Google Scholar 

  54. Li LG, Xue L, Feng SY, Liu HZ (2013) Functionalization of monovinyl substituted octasilsesquioxane via photochemical thiol-ene reaction. Inorg Chim Acta 407:269

    Article  CAS  Google Scholar 

  55. Wu Y, Li LG, Feng SY, Liu HZ (2013) Hybrid nanocomposites based on novolac resin and octa(phenethyl) polyhedral oligomeric silsesquioxanes (POSS): miscibility, specific interactions and thermomechanical properties. Polym Bull 70:3261

    Article  CAS  Google Scholar 

  56. Li Y, Su H, Feng X, Wang Z, Guo K, Wesdemiotis C, Fu Q, Cheng SZD, Zhang W (2014) Thiol-Michael “click” chemistry: another efficient tool for head functionalization of giant surfactants. Polym Chem 5:6151

    Article  CAS  Google Scholar 

  57. Kaźmierczak J, Kuciński K, Hreczycho G (2017) Highly efficient catalytic route for the synthesis of functionalized silsesquioxanes. Inorg Chem 56(15):9337

    Article  Google Scholar 

  58. Schäfer S, Kickelbick G (2017) Simple and high yield access to octafunctional azido, amine and urea group bearing cubic spherosilicates. Dalton Trans 46(1):221

    Article  Google Scholar 

  59. Tsukada S, Sekiguchi Y, Takai S, Abe Y, Gunji T (2015) Preparation of POSS derivatives by the dehydrogenative condensation of T8H with alcohols. J Ceram Soc Jpn 123(1441):739

    Google Scholar 

  60. Carniato F, Boccaleri E, Marchese L, Fina A, Tabuani D, Camino G (2007) Synthesis and characterisation of metal Isobutylsilsesquioxanes and their role as inorganic–organic nanoadditives for enhancing polymer thermal stability. Eur J Inorg Chem 4:585

    Article  Google Scholar 

  61. Li Q, Zhou Y, Hang X, Deng S, Huang F, Du L, Li Z (2008) Synthesis and characterization of a novel arylacetylene oligomer containing POSS units in main chains. Eur Polym J 44:2538

    Article  CAS  Google Scholar 

  62. Desmartin Chomel A, Dempsey P, Latournerie J, Hourlier-Bahloul D, Jayasooriya UA (2005) Gel to glass transformation of methyltriethoxysilane:  a silicon oxycarbide glass precursor investigated using vibrational spectroscopy. Chem Mater 17:4468

    Article  CAS  Google Scholar 

  63. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409

    Google Scholar 

  64. Croce G, Carniato F, Milanesio M, Boccaleri E, Paul G, van Beek W, Marchese L (2009) Understanding the physico-chemical properties of polyhedral oligomeric silsesquioxanes: a variable temperature multidisciplinary study. Phys Chem Chem Phys 11:10087

    Article  CAS  Google Scholar 

  65. Marchesi S, Carniato F, Boccaleri E (2014) Synthesis and characterisation of a novel Europium(III)-containing heptaisobutyl-POSS. New J Chem 38:2480

    Article  CAS  Google Scholar 

  66. Marchesi S, Carniato F, Palin L, Boccaleri E (2015) POSS as building-blocks for the preparation of polysilsesquioxanes through an innovative synthetic approach. Dalton Trans 44:2042

    Article  CAS  Google Scholar 

  67. Owens TM, Nicholson KT, Fosnacht DR, Orr BG, Banaszak Holl MM (2006) Formation of mixed monolayers of silsesquioxanes and alkylsilanes on gold. Langmuir 22:9619

    Article  CAS  Google Scholar 

  68. Bolln C, Tsuchida A, Frey H, Mulhaupt R (1997) Thermal properties of the homologous series of 8-fold alkyl-substituted octasilsesquioxanes. Chem Mater 9:1475

    Article  CAS  Google Scholar 

  69. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440:36

    Article  CAS  Google Scholar 

  70. Fina A, Tabuani D, Frache A, Boccaleri E, Camino G (2005) In: Le Bras M, Wilkie C, Bourbigot S (eds) Fire retardancy of polymers: new applications of mineral fillers. Royal Society of Chemistry, Cambridge, UK, pp 202–220

    Google Scholar 

  71. Calzaferri G, Hoffmann R (1991) The symmetrical octasilasesquioxanes X8Si8O12: electronic structure and reactivity. J Chem Soc Dalton Trans S:917

    Google Scholar 

  72. Loboda MJ, Toksey GA (1998) Understanding hydrogen silsesquioxane-based dielectric film processing. Solid State Technol 41:99

    Google Scholar 

  73. Liou HC, Pretzer J (1998) Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films. Thin Film Solids 335:186

    Article  CAS  Google Scholar 

  74. Siew YW, Sarkar G, Hu X, Hui J, See A, Chua CT (2000) Thermal curing of hydrogen silsesquioxane. J Electrocem Soc 147:335

    Article  CAS  Google Scholar 

  75. Yang CC, Chen WC (2002) The structures and properties of hydrogen silsesquioxane (HSQ) films produced by thermal curing. J Mater Chem 12(4):1138

    Article  CAS  Google Scholar 

  76. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS−siloxane copolymers. Chem. Mater 8:1250

    Article  CAS  Google Scholar 

  77. Zeng J, Bennett C, Jarrett WL, Iyer S, Kumar S, Mathias LJ, Schiraldi DA (2005) Structural changes in trisilanol POSS during nanocomposite melt processing. Compos Interfaces 11:673

    Article  CAS  Google Scholar 

  78. Hybrid plastics website: https://hybridplastics.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Boccaleri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boccaleri, E., Carniato, F. (2018). Synthesis Routes of POSS. In: Kalia, S., Pielichowski, K. (eds) Polymer/POSS Nanocomposites and Hybrid Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-02327-0_1

Download citation

Publish with us

Policies and ethics