Skip to main content

Processing of Digested Pulp from Agricultural Biogas Plant

  • Conference paper
  • First Online:
Innovative Approaches and Applications for Sustainable Rural Development (HAICTA 2017)

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

In the European Union, renewable energy sources (RES) constitute an important alternative to fossil fuels. Solid biomass is mainly used for the production of renewable energy. One of the RES types is the production of agricultural biogas as a result of the anaerobic digestion process (AD). This process generates biogas and digestate. The second product is a residue from the fermentation process, consisting mainly of nondigested organic and mineral components. The market offers many devices for the management of the digestate (digested pulp), e.g., separators that separate the raw material into solid and liquid fractions. The aim of the present book chapter was to discuss the possibility of improving the management efficiency of biogas plant by using the digested pulp as a fertilizer and for other purposes. For a designed 1 MWel biogas plant installation, modern technological solutions have been proposed. It can be concluded that a proper digested pulp management can bring additional profits to the biogas plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthurson V (2009) Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – potential benefits and drawbacks. Energies 2:226–242

    Article  CAS  Google Scholar 

  • Bhattacharyya SC (2011) Understanding and analysing energy demand. In: Energy economics. Springer, London, pp 41–76

    Chapter  Google Scholar 

  • Börjesson P, Berglund M (2007) Environmental system analysis of biogas system – Part II: the environmental impact of replacing various systems. Biomass Bioenergy 31:326–344

    Article  Google Scholar 

  • Budzianowski M (2016) A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew Sust Energ Rev 54:1148–1171

    Article  Google Scholar 

  • Cavalli D, Cabassi G, Borrelli L, Geromel G, Bechini L, Degano L, Gallina PM (2016) Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. Eur J Agronomy 73:34–41

    Article  Google Scholar 

  • Chocyk D, Gładyszewska B, Ciupak A, Oniszczuk T, Mościcki L, Rejak A (2015) Influence of water addition on mechanical properties of thermoplastic starch foils. Int Agrophysics 29(3):267–275

    Article  CAS  Google Scholar 

  • Cerbin S, Nowakowski K, Dach J, Pilarski K, Boniecki P, Przybył J, Lewicki A (2012) Possibilities of neural image analysis implementation in monitoring of microalgae production as a substrate for biogas plant. 4th international conference on digital image processing (ICDIP 2012). Proceedings of SPIE, vol 8334. Article Number: 83342A. https://doi.org/10.1117/12.954164

  • Cieślik M, Dach J, Lewicki A, Smurzyńska A, Janczak D, Pawlicka-Kaczorowska J, Boniecki P, Cyplik P, Czekała W, Jóźwiakowski K (2016) Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy 115(2):1495–1502

    Article  Google Scholar 

  • Czekała W, Dach J, Czekała J (2015) Operational possibilities of a biogas plant at the brewery under polish conditions. Proceedings of the 2nd international conference on energy & environment: bringing together engineering and economics. Guimaraes, Portugal 520–525

    Google Scholar 

  • Czekała W, Smurzyńska A, Cieślik M, Boniecki P, Kozłowski K (2016a) Biogas efficiency of selected fresh fruit covered by the Russian embargo. In: Energy and clean technologies conference proceedings SGEM. International Multidisciplinary Scientific GeoConferences SGEM - Sofia, Bulgaria 3:227–233

    Google Scholar 

  • Czekała W, Bartnikowska S, Lewicka A, Bugała A, Zbytek Z, Lewicki A (2016b) Economic and energy efficiency of the solid biofuels produced from digested pulp. MATEC web of conferences 60, 04005 ICCBS 2016. https://doi.org/10.1051/matecconf/20166004005

    Article  Google Scholar 

  • Czekała W, Dach J, Dong R, Janczak D, Malińska K, Jóźwiakowski K, Smurzyńska A, Cieślik M (2017) Composting potential of the solid fraction of digested pulp produced by a biogas plant. Biosyst Eng 160:25–29

    Article  Google Scholar 

  • Dach J, Jóźwiakowski K, Kowalczyk-Juśko A, Kozlowski K, Neugebauer M (2016) Biogas plant exploitation under the low-subsidies market conditions: maize silage versus biowaste scenarios. In: Energy and clean technologies conference proceedings, SGEM. International Multidisciplinary Scientific GeoConferences SGEM - Sofia, Bulgaria 3:221–226

    Google Scholar 

  • Demirtas O (2013) Evaluating the best renewable energy technology for sustainable energy planning. Int J Energy Econ Policy 3(Special Issue):23–33

    Google Scholar 

  • Haraldsen TK, Andersen U, Krogstad T, Sørheim R (2011) Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley. Waste Manag Res 29:1271–1276

    Article  CAS  Google Scholar 

  • Igliński B, Iglińska A, Kujawski W, Buczkowski R, Cichosz M (2011) Bioenergy in Poland. Renew Sust Energ Rev 15(6):2999–3007

    Article  Google Scholar 

  • Kaparaju PLN, Rintala JA (2008) Effects of solid-liquid separation on recovering residual methane and nitrogen from digested dairy cow manure. Bioresour Technol 99:120–127

    Article  CAS  Google Scholar 

  • Kataki S, Hazarika S, Baruah DC (2017) Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient. Waste Manag 59:102–117

    Article  CAS  Google Scholar 

  • Kowalczyk-Juśko A, Szymańska M (2015) Poferment nawozem dla rolnictwa. http://ksow.pl/uploads/tx_library/files/Poferment_nawozem_dla_rolnictwa_01.pdf. Accessed 3 Aug 2008

  • Kowalczyk-Juśko A, Kowalczuk J, Szmigielski M, Marczuk A, Jóźwiakowski K, Zarajczyk K, Maslowski A, Slaska-Grzywna B, Sagan A, Zarajczyk J (2015a) Quality of biomass pellets used as fuel or raw material for syngas production. Przemysl Chemiczny 94(10):1835–1837

    Google Scholar 

  • Kowalczyk-Juśko A, Koscik B, Jóźwiakowski K, Marczuk A, Zarajczyk J, Kowalczuk J, Szmigielski M, Sagan A (2015b) Effects of biochemical and thermochemical conversion of sorghum biomass to usable energy. Przemysl Chemiczny 94(10):1838–1840

    Google Scholar 

  • Kozłowski K, Lewicki A, Sołowiej P, Neugebauer P, Smurzyńska A (2016) Usage of waste whey as mono-substrate in continuous fermentation process. In: Energy and clean technologies conference proceedings, SGEM. International Multidisciplinary Scientific GeoConferences SGEM - Sofia, Bulgaria 3:345–350

    Google Scholar 

  • Koszel M, Lorencowicz E (2015) Agricultural use of biogas digestate as a replacement fertilizers. Agric Agric Sci Procedia 7:119–124

    Google Scholar 

  • Lewicki A, Dach J, Janczak D, Czekała W (2013) The experimental macro Photoreactor for microalgae production. 6th international conference on information and communication technologies in agriculture, food and environment (HAICTA 2013). Book Series: Procedia Technology 8:622–627

    Article  Google Scholar 

  • Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci Special Issue Biogas 12(3):242–257

    Article  Google Scholar 

  • Riva C, Orzi V, Carozzi M, Acutis M, Boccasile G, Lonati S, Tambone F, D’Imporzano G, Adani F (2016) Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: agronomic performance, odours, and ammonia emission impacts. Sci Total Environ 547:206–214

    Article  CAS  Google Scholar 

  • Sigurnjak I, Vaneeckhaute C, Michels E, Ryckaert B, Ghekiere G, Tack FMG, Meers E (2017) Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years. Sci Total Environ 599–600:1885–1894

    Article  Google Scholar 

  • Sogn TA, Dragicevic I, Linjordet R, Krogstad T, Eijsink VGH, Eich-Greatorex S (2018) Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. Int J Recycling Organic Waste Agric 7(1):49–58

    Article  Google Scholar 

  • Szmigielski M, Zarajczyk J, Kowalczyk-Juśko A, Kowalczuk J, Rydzak L, Slaska-Grzywna B, Krysiak Z, Cycan D, Szczepanik M (2014) Quality of biomass briquettes as stock for thermochemical conversion and syngas production. Przemysl Chemiczny 93(11):1986–1990

    CAS  Google Scholar 

  • Tampio E, Marttinen S, Rintala J (2016) Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. J Clean Prod 125:22–32

    Article  CAS  Google Scholar 

  • Yadav A, Garg VK (2016) Vermiconversion of biogas plant slurry and parthenium weed mixture to manure. Int J Recycl Org Waste Agricult 5:301–309

    Article  Google Scholar 

  • Waliszewska H, Zborowska M, Waliszewska B, Borysiak S, Antczak A, Czekała W (2018) Transformation of Miscanthus and Sorghum cellulose during methane fermentation. Cellulose 25(2):1207–1216

    Article  CAS  Google Scholar 

  • Wang F, Xiong XR, Liu CZ (2009) Biofuels in China: opportunities and challenges. In Vitro Cell Dev Biol Plant 45:342–349

    Article  Google Scholar 

  • Waszkielis KM, Wronowski R, Chlebus W, Białobrzewski I, Dach J, Pilarski K, Janczak D (2013) The effect of temperature, composition and phase of the composting process on the thermal conductivity of the substrate. Ecol Eng 61:354–357

    Article  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  • Wolna-Maruwka A, Dach J (2009) Effect of type and proportion of different structure-creating additions on the inactivation rate of pathogenic bacteria in sewage sludge composting in a cybernetic bioreactor. Arch Environ Prot 35(3):87–100

    CAS  Google Scholar 

  • Wu D, Lü F, Shao L, He P (2017) Effect of cycle digestion time and solid-liquid separation on digestate recirculated one-stage dry anaerobic digestion: use of intact polar lipid analysis for microbes monitoring to enhance process evaluation. Renew Energy 103:38–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Czekała .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czekała, W. (2019). Processing of Digested Pulp from Agricultural Biogas Plant. In: Theodoridis, A., Ragkos, A., Salampasis, M. (eds) Innovative Approaches and Applications for Sustainable Rural Development. HAICTA 2017. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02312-6_21

Download citation

Publish with us

Policies and ethics