Functionalisation of Silicones with Polysaccharides

  • Matej BračičEmail author
  • Simona Strnad
  • Lidija Fras Zemljič
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


A basic strategies to deal with the above described problems of CAUTI and biofilm formation is aimed toward modification of the implant’s surface-chemical properties, coating with a desired agent, and by manipulation of the surface roughness or morphology which can prevent the attachment of bacteria to the implant [1]. This chapter will be devoted predominantly to coating of silicon-based medical implants. Two strategies are common in coating of medical implants to achieve the above-mentioned goals.


  1. 1.
    K. Vasilev, J. Cook, H.J. Griesser, Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices 6, 553–567 (2009). Scholar
  2. 2.
    M. Bračič, Surface Modification of Silicone with Polysaccharides for the Development of Antimicrobial Urethral Catheters (Maribor, 2016)Google Scholar
  3. 3.
    L.E. Nicolle, The chronic indwelling catheter and urinary infection in long-term-care facility residents. Infect. Control Hosp. Epidemiol. 22, 316–321 (2001). Scholar
  4. 4.
    L. Muzzi-Bjornson, L. Macera, Preventing infection in elders with long-term indwelling urinary catheters. J. Am. Acad. Nurse Pract. 23, 127–134 (2011). Scholar
  5. 5.
    K. Schumm, T.B.L. Lam, Types of urethral catheters for management of short-term voiding problems in hospitalised adults. Cochrane Database Syst. Rev. 110–121 (2008).
  6. 6.
    Y. Sh, L. Ys, L. Fh, Y. Jm, C. Ks, Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters. J. Biomed. Mater. Res. B Appl. Biomater. 83, 340–344 (2007). Scholar
  7. 7.
    E.L. Lawrence, I.G. Turner, Materials for urinary catheters: a review of their history and development in the UK. Med. Eng. Phys. 27, 443–453 (2005). Scholar
  8. 8.
    K. Efimenko, W.E. Wallace, J. Genzer, Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J. Colloid Interface Sci. 254, 306–315 (2002). Scholar
  9. 9.
    J. Roth, V. Albrecht, M. Nitschke, C. Bellmann, F. Simons, S. Zschoche, S. Michel, C. Luhmann, K. Grundke, B. Voit, Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 24, 12603–12611 (2008). Scholar
  10. 10.
    S. Hemmilä, J.V. Cauich-Rodríguez, J. Kreutzer, P. Kallio, Rapid, simple, and cost-effective treatments to achieve long-term hydrophilic PDMS surfaces. Appl. Surf. Sci. 258, 9864–9875 (2012). Scholar
  11. 11.
    K. Haji, Y. Zhu, M. Otsubo, C. Honda, Surface modification of silicone rubber after corona exposure. Plasma Process. Polym. 4, 1075–1080 (2007). Scholar
  12. 12.
    A.I. Lopez, A. Kumar, M.R. Planas, Y. Li, T.V. Nguyen, C. Cai, Biofunctionalization of silicone polymers using poly(amidoamine) dendrimers and a mannose derivative for prolonged interference against pathogen colonization. Biomaterials 32, 4336–4346 (2011). Scholar
  13. 13.
    C. Clec’h, C. Schwebel, A. Français, D. Toledano, J.-P. Fosse, M. Garrouste-Orgeas, E. Azoulay, C. Adrie, S. Jamali, A. Descorps-Declere, D. Nakache, J.-F. Timsit, Y. Cohen, Does catheter-associated urinary tract infection increase mortality in critically ill patients? Infect. Control Hosp. Epidemiol. 28, 1367–1373 (2007). Scholar
  14. 14.
    M. Bračič, L. Fras-Zemljič, L. Pérez, K. Kogej, K. Stana-Kleinschek, R. Kargl, T. Mohan, Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. J. Mater. Chem. B. 5, 3888–3897 (2017). Scholar
  15. 15.
    S. Bauer, M.P. Arpa-Sancet, J.A. Finlay, M.E. Callow, J.A. Callow, A. Rosenhahn, Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides. Langmuir 29, 4039–4047 (2013). Scholar
  16. 16.
    J. Zhou, J. Yuan, X. Zang, J. Shen, S. Lin, Platelet adhesion and protein adsorption on silicone rubber surface by ozone-induced grafted polymerization with carboxybetaine monomer. Colloids Surf. B Biointerfaces 41, 55–62 (2005). Scholar
  17. 17.
    M. Li, K.G. Neoh, L.Q. Xu, R. Wang, E.T. Kang, T. Lau, D.P. Olszyna, E. Chiong, Surface modification of silicone for biomedical applications requiring long-term antibacterial, antifouling, and hemocompatible properties. Langmuir 28, 16408–16422 (2012). Scholar
  18. 18.
    A. Oláh, H. Hillborg, G.J. Vancso, Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Appl. Surf. Sci. 239, 410–423 (2005). Scholar
  19. 19.
    E.P.T. De Givenchy, S. Amigoni, C. Martin, G. Andrada, L. Caillier, S. Géribaldi, F. Guittard, Fabrication of superhydrophobic PDMS surfaces by combining acidic treatment and perfluorinated monolayers. Langmuir 25, 6448–6453 (2009). Scholar
  20. 20.
    D. Maji, S.K. Lahiri, S. Das, Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surf. Interface Anal. 44, 62–69 (2012). Scholar
  21. 21.
    L.F. Zemljiĉ, Z. Perŝin, P. Stenius, Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 10, 1181–1187 (2009). Scholar
  22. 22.
    J.L. Fritz, M.J. Owen, Hydrophobic recovery of plasma-treated polydimethylsiloxane. J. Adhes. 54, 33–45 (1995). Scholar
  23. 23.
    M. Bracic, T. Mohan, R. Kargl, T. Griesser, S. Hribernik, S. Kostler, K. Stana-Kleinschek, L. Fras-Zemljic, Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Adv. 4, 11955–11961 (2014). Scholar
  24. 24.
    D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sens. Actuators, B Chem. 114, 170–172 (2006). Scholar
  25. 25.
    S. Béfahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand, S. Yunus, Thickness and elastic modulus of plasma treated PDMS silica-like surface layer. Langmuir 26, 3372–3375 (2010). Scholar
  26. 26.
    U.-S. Ha, Y.-H. Cho, Catheter-associated urinary tract infections: new aspects of novel urinary catheters. Int. J. Antimicrob. Agents 28, 485–490 (2006). Scholar
  27. 27.
    R.O. Darouiche, H. Safar, I.I. Raad, In vitro efficacy of antimicrobial-coated bladder catheters in inhibiting bacterial migration along catheter surface. J. Infect. Dis. 176, 1109–1112 (1997)CrossRefGoogle Scholar
  28. 28.
    D. Kowalczuk, G. Ginalska, A. Przekora, The cytotoxicity assessment of the novel latex urinary catheter with prolonged antimicrobial activity. J. Biomed. Mater. Res., Part A 98 A, 222–228 (2011). Scholar
  29. 29.
    R. Platt, B.F. Polk, B. Murdock, B. Rosner, Prevention of catheter-associated urinary tract infection: a cost-benefit analysis. Infect. Control Hosp. Epidemiol. 10, 60–64 (2011)CrossRefGoogle Scholar
  30. 30.
    T.A. Gaonkar, L. Caraos, S. Modak, Efficacy of a silicone urinary catheter impregnated with chlorhexidine and triclosan against colonization with Proteus mirabilis and other uropathogens. Infect. Control Hosp. Epidemiol. 28, 596–598 (2007). Scholar
  31. 31.
    O. Girshevitz, Y. Nitzan, C.N. Sukenik, Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating. Chem. Mater. 20, 1390–1396 (2008). Scholar
  32. 32.
    Y. Liu, C. Leng, B. Chisholm, S. Stafslien, P. Majumdar, Z. Chen, Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications. Langmuir 29, 2897–2905 (2013). Scholar
  33. 33.
    M.M. Gabriel, M.S. Mayo, L.L. May, R.B. Simmons, D.G. Ahearn, In vitro evaluation of the efficacy of a silver-coated catheter. Curr. Microbiol. 33, 1–5 (1996). Scholar
  34. 34.
    J. Johnson, P. Roberts, R. Olsen, K. Moyer, W. Stamm, Prevention of catheter associated urinary tract infections with a silver oxide coated urinary catheter: clinical and microbiologic correlates. J. Infect. Dis. 162, 1145–1150 (1990)CrossRefGoogle Scholar
  35. 35.
    H. Kumon, H. Hashimoto, M. Nishimura, K. Monden, N. Ono, Catheter-associated urinary tract infections: impact of catheter materials on their management. Int. J. Antimicrob. Agents 17, 311–316 (2001). Scholar
  36. 36.
    M. Chung, C. Chin-Chen, Catheter inner surface metal coating by sputteringwith microplasma, in IEEE 35th International Conference on Plasma Science 2008. ICOPS 2008 (2008), p. 1Google Scholar
  37. 37.
    C.Y. Tang, D. zhu Chen, K.Y.Y. Chan, K.M. Chu, P.C. Ng, T.M. Yue, Fabrication of antibacterial silicone composite by an antibacterial agent deposition, solution casting and crosslinking technique. Polym. Int. 60, 1461–1466 (2011). Scholar
  38. 38.
    P. AshaRani, M.P. Hande, S. Valiyaveettil, Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 10, 65 (2009). Scholar
  39. 39.
    L. Braydich-Stolle, S. Hussain, J.J. Schlager, M.C. Hofmann, In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88, 412–419 (2005). Scholar
  40. 40.
    X. Yang, A.P. Gondikas, S.M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J.N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in caenorhabditis elegans. Environ. Sci. Technol. 46, 1119–1127 (2012). Scholar
  41. 41.
    D.R. Monteiro, L.F. Gorup, A.S. Takamiya, A.C. Ruvollo-Filho, E.R. de Camargo, D.B. Barbosa, The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents 34, 103–110 (2009). Scholar
  42. 42.
    W. Zhang, J. Ji, Y. Zhang, Q. Yan, E.Z. Kurmaev, A. Moewes, J. Zhao, P.K. Chu, Effects of NH3, O2, and N2 co-implantation on Cu out-diffusion and antimicrobial properties of copper plasma-implanted polyethylene. Appl. Surf. Sci. 253, 8981–8985 (2007). Scholar
  43. 43.
    D.E. Heskett, Antimicrobial Urinary Catheter (2000)Google Scholar
  44. 44.
    J.H.H. Bongaerts, J.J. Cooper-White, J.R. Stokes, Low biofouling chitosan-hyaluronic acid multilayers with ultra-low friction coefficients. Biomacromolecules 10, 1287–1294 (2009). Scholar
  45. 45.
    L. Medda, M.F. Casula, M. Monduzzi, A. Salis, Adsorption of lysozyme on hyaluronic acid functionalized SBA-15 mesoporous silica: a possible bioadhesive depot system. Langmuir 30, 12996–13004 (2014). Scholar
  46. 46.
    B. Polanič, Površinska obdelava silikonskega materiala (Maribor, 2016)Google Scholar
  47. 47.
    T.I. Croll, A.J. O’Connor, G.W. Stevens, J.J. Cooper-White, A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 7, 1610–1622 (2006). Scholar
  48. 48.
    A. Mannan, S.J. Pawar, Anti-infective coating of gentamicin sulphate encapsulated PEG/PVA/chitosan for prevention of biofilm formation. Int. J. Pharm. Pharm. Sci. 6, 571–576 (2014)Google Scholar
  49. 49.
    D. Kowalczuk, A. Przekora, G. Ginalska, Biological safety evaluation of the modified urinary catheter. Mater. Sci. Eng., C 49, 274–280 (2015). Scholar
  50. 50.
    R. Wang, K.G. Neoh, Z. Shi, E.T. Kang, P.A. Tambyah, E. Chiong, Inhibition of Escherichia coli and Proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnol. Bioeng. 109, 336–345 (2012). Scholar
  51. 51.
    Y. Tan, F. Han, S. Ma, W. Yu, Carboxymethyl chitosan prevents formation of broad-spectrum biofilm. Carbohydr. Polym. 84, 1365–1370 (2011). Scholar
  52. 52.
    M. Bračič, T. Mohan, T. Griesser, K. Stana-Kleinschek, S. Strnad, L. Fras-Zemljič, One-step noncovalent surface functionalization of PDMS with chitosan-based bioparticles and their protein-repellent properties. Adv. Mater. Interfaces. 4, 1–11 (2017). Scholar
  53. 53.
    J.G. Alauzun, S. Young, R. D’Souza, L. Liu, M.A. Brook, H.D. Sheardown, Biocompatible, hyaluronic acid modified silicone elastomers. Biomaterials 31, 3471–3478 (2010). Scholar
  54. 54.
    X. Cao, M.E. Pettit, S.L. Conlan, W. Wagner, A.D. Ho, A.S. Clare, J.A. Callow, M.E. Callow, M. Grunze, A. Rosenhahn, Resistance of polysaccharide coatings to proteins, hematopoietic cells, and marine organisms. Biomacromol 10, 907–915 (2009). Scholar
  55. 55.
    K.R. Patel, H. Tang, W.E. Grever, K.Y. Simon Ng, J. Xiang, R.F. Keep, T. Cao, J.P. McAllister, Evaluation of polymer and self-assembled monolayer-coated silicone surfaces to reduce neural cell growth. Biomaterials 27, 1519–1526 (2006). Scholar
  56. 56.
    I. Wong, C.M. Ho, Surface molecular property modifications for poly (dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluid. 7, 291–306 (2009). Scholar
  57. 57.
    Z. Yue, X. Liu, P.J. Molino, G.G. Wallace, Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid—collagen conjugate for neural interfacing. Biomaterials 32, 4714–4724 (2011). Scholar
  58. 58.
    A. Francesko, M.M. Fernandes, K. Ivanova, S. Amorim, R.L. Reis, I. Pashkuleva, E. Mendoza, A. Pfeifer, T. Heinze, T. Tzanov, Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater. 33, 203–212 (2016). Scholar
  59. 59.
    A. Colomer, A. Pinazo, M.A. Manresa, M.P. Vinardell, M. Mitjans, M.R. Infante, L. Pérez, Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities. J. Med. Chem. 54, 989–1002 (2011). Scholar
  60. 60.
    J. Merta, P. Stenius, Interactions between cationic starch and anionic surfactants. Colloid Polym. Sci. 273, 974–983 (1995). Scholar
  61. 61.
    K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solution, 2nd edn. (Wiley, West Sussex, 2003).
  62. 62.
    K. Thalberg, B. Lindman, Interaction between hyaluronan and cationic surfactants. J. Phys. Chem. 93, 1478–1483 (1989). Scholar
  63. 63.
    M. Bračič, P. Hansson, L. Pérez, L.F. Zemljič, K. Kogej, Interaction of sodium hyaluronate with a biocompatible cationic surfactant from lysine: a binding study. Langmuir 31, 12043–12053 (2015). Scholar
  64. 64.
    M.M. Fernandes, K. Ivanova, A. Francesko, E. Mendoza, T. Tzanov, Immobilization of antimicrobial core-shell nanospheres onto silicone for prevention of Escherichia coli biofilm formation. Process Biochem. 59, 116–122 (2017). Scholar
  65. 65.
    M. Bračič, O. Šauperl, S. Strnad, I. Kosalec, L. Fras Zemljič, Surface modification of silicone with colloidal polysaccharides formulations for the development of antimicrobial urethral catheters. Appl. Surf. Sci. Submitted (2018)Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Matej Bračič
    • 1
    Email author
  • Simona Strnad
    • 1
  • Lidija Fras Zemljič
    • 1
  1. 1.Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations