Polysaccharides in Medical Applications

  • Matej BračičEmail author
  • Simona Strnad
  • Lidija Fras Zemljič
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Polysaccharides are the most important organic raw materials, building blocks in several fields and machineries of life [1]. Since the 1980s, naturally occurring polysaccharides, represented by cellulose, have been re-evaluated as outstanding chemicals and/or materials with various uses. Natural polysaccharides from different sources exhibit some special characteristics at the molecular and supramolecular levels, which are associated with their hydrogen-bonding ability, side-group reactivity, which can be modified covalently or by ionic bonds, enzymatic degradability, chirality, semi-rigidity, etc.


  1. 1.
    P. Berlin, D. Klemm, J. Tiller, R. Rieseler, A novel soluble aminocellulose derivative type: its transparent film-forming properties and its efficient coupling with enzyme proteins for biosensors. Macromol. Chem. Phys. 201, 2070–2082 (2000).;2-ECrossRefGoogle Scholar
  2. 2.
    S. Dumitriu (ed.), Polysaccharides in Medicinal Applications (Marcel Dekker Inc., New York, 1996)Google Scholar
  3. 3.
    V. Popa (ed.), Polysaccharides in Medicinal and Pharmaceutical Applications (Smithers Rapra Technology, 2011)Google Scholar
  4. 4.
    S. Chudzik, Natural Biodegradable Polysaccharide Coatings for Medical Articles (W.I.P. Organization, 2005)Google Scholar
  5. 5.
    A. Basu, K.R. Kunduru, E. Abtew, A.J. Domb, Polysaccharide-based conjugates for biomedical applications. Bioconjug. Chem. 26, 1396–1412 (2015). Scholar
  6. 6.
    P. Mandal, C.A. Pujol, E.B. Damonte, T. Ghosh, B. Ray, Xylans from Scinaia hatei: structural features, sulfation and anti-HSV activity. Int. J. Biol. Macromol. 46, 173–178 (2010). Scholar
  7. 7.
    H. Fasl, J. Stana, D. Stropnik, S. Strnad, K. Stana-Kleinschek, V. Ribitsch, Improvement of the hemocompatibility of PET surfaces using different sulphated polysaccharides as coating materials. Biomacromolecules 11, 377–381 (2010). Scholar
  8. 8.
    A. Salam, J.J. Pawlak, R.A. Venditti, K. El-tahlawy, Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 18, 1033–1041 (2011). Scholar
  9. 9.
    Y. Nishio, Material Functionalization of Cellulose and Related Polysaccharides via Diverse Microcompositions (Springer, Berlin, 2006)CrossRefGoogle Scholar
  10. 10.
    G. Kogan, L. Šoltés, R. Stern, P. Gemeiner, Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29, 17–25 (2007). Scholar
  11. 11.
    M.J. Franklin, D.E. Nivens, J.T. Weadge, P.L. Howell, Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front. Microbiol. 2, 167 (2011). Scholar
  12. 12.
    S.U. Shen (ed.), Pullulan Films and Their Use in Edible Packaging (W.I.P. Organization, 2007)Google Scholar
  13. 13.
    M.N.V. Ravi Kumar, A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000). Scholar
  14. 14.
    R. Ahvenainen, Active and intelligent packaging: an introduction, in Novel Food Packaging Techniques (Woodhead Publishing Limited, 2003)Google Scholar
  15. 15.
    E. Shalaby (ed.), Biological Activities and Application of Marine Polysaccharides (InTech Open, 2017)Google Scholar
  16. 16.
    A. Doliška, S. Strnad, J. Stana, E. Martinelli, V. Ribitsch, K. Stana-Kleinschek, In vitro haemocompatibility evaluation of PET surfaces using the quartz crystal microbalance technique. J. Biomater. Sci. Polym. Ed. 23, 697–714 (2012). Scholar
  17. 17.
    M. Gericke, A. Doliška, J. Stana, T. Liebert, T. Heinze, K. Stana-Kleinschek, Semi-synthetic polysaccharide sulfates as anticoagulant coatings for PET, 1 - cellulose sulfate. Macromol. Biosci. 11, 549–556 (2011). Scholar
  18. 18.
    D. Stephan, P. Katrin, K. Manuela, B. Anja, S.U. Suhubert, H. Thomas, Homogeneous sulfation of xylan from different sources. Macromol. Mater. Eng. 296, 551–561 (2011). Scholar
  19. 19.
    T. Indest, J. Laine, L.-S. Johansson, K. Stana-Kleinschek, S. Strnad, R. Dworczak, V. Ribitsch, Adsorption of fucoidan and chitosan sulfate on chitosan modified PET films monitored by QCM-D. Biomacromol 10, 630–637 (2009). Scholar
  20. 20.
    S. Sanyasi, R.K. Majhi, S. Kumar, M. Mishra, A. Ghosh, M. Suar, P.V. Satyam, H. Mohapatra, C. Goswami, L. Goswami, Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci. Rep. 6, 1–16 (2016). Scholar
  21. 21.
    F. Sarei, N.M. Dounighi, H. Zolfagharian, P. Khaki, S.M. Bidhendi, Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J. Pharm. Sci. 75, 442–449 (2013). Scholar
  22. 22.
    F. Wang, S. Yang, J. Yuan, Q. Gao, C. Huang, Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. J. Biomater. Appl. 31, 3–12 (2016). Scholar
  23. 23.
    Y. Wang, X. Wang, J. Shi, R. Zhu, J. Zhang, Z. Zhang, D. Ma, Y. Hou, F. Lin, J. Yang, M. Mizuno, A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering. Sci. Rep. 6, 1–13 (2016). Scholar
  24. 24.
    J.C. Courtenay, M.A. Johns, F. Galembeck, C. Deneke, E.M. Lanzoni, C.A. Costa, J.L. Scott, R.I. Sharma, Surface modified cellulose scaffolds for tissue engineering. Cellulose 24, 253–267 (2017). Scholar
  25. 25.
    M. Finšgar, A.P. Uzunalić, J. Stergar, L. Gradišnik, U. Maver, Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications. Sci. Rep. 6, 1–17 (2016). Scholar
  26. 26.
    T. Ristić, A. Zabret, L.F. Zemljič, Z. Peršin, Chitosan nanoparticles as a potential drug delivery system attached to viscose cellulose fibers. Cellulose 24, 739–753 (2017). Scholar
  27. 27.
    M. Bračič, L. Fras-Zemljič, L. Pérez, K. Kogej, K. Stana-Kleinschek, R. Kargl, T. Mohan, Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. J. Mater. Chem. B. 5, 3888–3897 (2017). Scholar
  28. 28.
    C.L. Romanò, S. Scarponi, E. Gallazzi, D. Romanò, L. Drago, Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J. Orthop. Surg. Res. 10, 157 (2015). Scholar
  29. 29.
    G. Scott (ed.), Degradable Polymers: Principles and Applications, 2nd edn. (Springer, Netherlands, 2002)Google Scholar
  30. 30.
    F. Iolanda, D. Gianfranco, Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 59, 227–238 (2010). Scholar
  31. 31.
    S. Strnad, N. Velkova, B. Saake, A. Doliška, M. Bračič, L.F. Zemljič, Influence of sulfated arabino- and glucuronoxylans charging-behavior regarding antithrombotic properties. React. Funct. Polym. 73, 1639–1645 (2013). Scholar
  32. 32.
    E. Karbassi, A. Asadinezhad, M. Lehocký, P. Humpolíček, A. Vesel, I. Novák, P. Sáha, Antibacterial performance of alginic acid coating on polyethylene film. Int. J. Mol. Sci. 15, 14684–14696 (2014). Scholar
  33. 33.
    S.B. Goodman, Z. Yao, M. Keeney, F. Yang, The future of biologic coatings for orthopaedic implants. Biomaterials 34, 3174–3183 (2013). Scholar
  34. 34.
    T. Ristić, S. Hribernik, L. Fras-Zemljič, Electrokinetic properties of fibres functionalised by chitosan and chitosan nanoparticles. Cellulose 22, 3811–3823 (2015). Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Matej Bračič
    • 1
    Email author
  • Simona Strnad
    • 1
  • Lidija Fras Zemljič
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations