Skip to main content

Synthesis of Mg–Zn–Ca Alloy by the Spark Plasma Sintering

  • Chapter
  • First Online:
Book cover Materials Design and Applications II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 98))

Abstract

Mechanical alloying (MA) and spark plasma sintering (SPS) was employed to synthesize the Mg60Zn35Ca5 alloy. SPS, which is also known as the field-assisted sintering technique, plasma-activated sintering, pulsed electric current sintering, or plasma pressure-compaction, appears to be promising for manufacturing a biodegradable Mg60Zn35Ca5 alloy. SPS is a sintering technology that utilizes Joule heating via a pulsed electric current to achieve densification. SPS allows very fast heating and cooling rates, very short holding time, and the possibility of obtaining fully dense samples at comparatively low sintering temperatures, typically a few hundred degrees lower than normal hot pressing. The Joule heating could lead to further improved densification via localized plastic flow at the necks of connected particles during sintering. The structure and compressive strength of the Mg60Zn35Ca5 alloy were investigated. In the X-ray diffraction (XRD) patterns of the representative Mg60Zn35Ca5 powder after 13 h of MA, a broad diffraction peak corresponding to the amorphous phase is noticed. The results by XRD show that the Mg60Zn35Ca5 alloy after sintering has a multiphase structure. The investigated alloy shows a slightly higher compressive strength (264–300 MPa) compared to the crystalline Mg-based alloy (250 MPa) and exhibits properties appropriate for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Persaud-Sharma, D., McGoron, A.: Biodegradable magnesium alloys: a review of material development and applications. J. Biomim. Biomater. Tissue Eng. 12, 25–39 (2012)

    Article  Google Scholar 

  2. Plaass, C., Falck, C., Ettinger, S., Sonnow, L., Calderone, F., Weizbauer, A., Reifenrath, J., Claassen, L., Waizy, H., Daniilidis, K., Stukenborg-Colsman, C., Windhagen, H.: Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies—3 year results of a randomized clinical trial. J. Orthop. Sci. 23(2), 321–327 (2018)

    Article  Google Scholar 

  3. Babilas, R., Bajorek, A., Simka, W., Babilas, D.: Study on corrosion behavior of Mg-based bulk metallic glasses in NaCl solution. Electrochim. Acta 209, 632–642 (2016)

    Article  CAS  Google Scholar 

  4. Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G.: Magnesium and its alloys as orthopedic biomaterials. Biomaterials 27, 1728–1734 (2006)

    Article  CAS  Google Scholar 

  5. Zheng, Y.F., Gu, X.N., Witte, F.: Biodegradable metals. Mater. Sci. Eng. Rep. 77, 1–34 (2014)

    Article  Google Scholar 

  6. Zheng, Y.F., Gu, X.N., Xi, Y.L., Chai, D.L.: In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater. 6, 1783–1791 (2010)

    Article  CAS  Google Scholar 

  7. Nowosielski, R., Cesarz-Andraczke, K., Sakiewicz, P., Maciej, A., Jakóbik-Kolon, A., Babilas, R.: Corrosion of biocompatible Mg66+xZn30-xCa4 (x=0.2) bulk metallic glasses. Arch. Metall. Mater. 61(2), 807–810 (2016)

    Google Scholar 

  8. Brar, H.S., Platt, M.O., Sarntinoranont, M., Martin, P.I., Manuel, M.V.: Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61(9), 31–34 (2009)

    Article  CAS  Google Scholar 

  9. Gu, X.N., Zheng, Y.F.: A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 4(2), 111–115 (2010)

    Article  Google Scholar 

  10. Hartwig, A.: Role of magnesium in genomic stability. Mutat. Res. 475, 113–121 (2001)

    Article  CAS  Google Scholar 

  11. Saris, N.E., Mervaala, E., Karppanen, H., Khawaja, J.A., Lewenstam, A.: Magnesium: an update on physiological, clinical and analytical aspects. Clin. Chim. Acta 294(1–2), 1–26 (2000)

    Article  CAS  Google Scholar 

  12. Lavernia, E.J., Gomez, E., Grant, N.J.: The structures and properties of Mg-Al-Zr and Mg-Zn-Zr alloys produced by liquid dynamic compaction. Mater. Sci. Eng. 95, 225–236 (1987)

    Article  CAS  Google Scholar 

  13. Luo, A., Pekguleryuz, M.O.: Cast magnesium alloys for elevated temperature applications. J. Mater. Sci. 29, 5259–5271 (994)

    Google Scholar 

  14. Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K.U., Willumeit, R., Feyerabend, F.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12(5–6), 63–72 (2008)

    Article  CAS  Google Scholar 

  15. Zhang, S., Li, J., Song, Y., Zhao, C., Zhang, X., Xie, C., Bian, Y.: In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Mater. Sci. Eng. C 29(6), 1907–1912 (2009)

    Article  CAS  Google Scholar 

  16. Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Bian, Y.: Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 6(2), 626–640 (2010)

    Google Scholar 

  17. Wang, Y.B., Xie, X.H., Li, H.F., Wang, X.L., Zhao, M.Z., Zhang, E.W., Qin, L.: Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta Biomater. 7(8), 3196–3208 (2011)

    Google Scholar 

  18. Gonzalez, S., Pellicer, E., Fornell, J., Blanquer, A., Barrios, L., Ibanez, E., Sort, J.: Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg–Zn–Ca alloys through Pd-alloying. J. Mech. Behav. Biomed. Mater. 6, 53–62 (2012)

    Google Scholar 

  19. Hänzi, A.C., Dalla Torre, F.H., Sologubenko, A.S., Gunde, P., Schmid-Fetzer, R., Kuehlein, M., Löffler, J.F., Uggowitzer, P.J.: Design strategy for microalloyed ultra-ductile magnesium alloys. Philos. Mag. Lett. 89, 377–390 (2009)

    Article  Google Scholar 

  20. Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000)

    Article  CAS  Google Scholar 

  21. Fousova, M., Capek, J., Vojtech, D.: Magnesium-Zinc alloy prepared by mechanical alloying and spark plasma sintering. In: Metal Conference, Brno, Czech Republic, 21–23 May 2014

    Google Scholar 

  22. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  23. Zhao, Y.Y., Ma, E., Xu, J.: Reliability of compressive fracture strength of Mg–Zn–Ca bulk metallic glasses: flaw sensitivity and Weibull statistics. Scr. Mater. 58, 496–499 (2008)

    Article  CAS  Google Scholar 

  24. Calka, A., Radlinski, A.P.: Amorphization of MgZn alloys by mechanical alloying. Mater. Sci. Eng. A 118, 131–135 (1989)

    Article  Google Scholar 

  25. Rousselot, S., Bichat, M.P., Guay, D., Roue, L.: Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling. J. Power Sources 175, 621–624 (2008)

    Article  CAS  Google Scholar 

  26. Lee, P.Y., Kao, M.C., Lin, C.K., Huang, J.C.: Mg-Y-Cu bulk metallic glass prepared by mechanical alloying and vacuum hot-pressing. Intermetallics 14, 994–999 (2006)

    Article  CAS  Google Scholar 

  27. El-Rahman, S.S.: Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol. Res. 47(3), 189–194 (2003)

    Article  CAS  Google Scholar 

  28. Bell, S., Davis, B., Javaid, A., Essadiqi, E.: Final report on effect of impurities in magnesium. Technical Report No. 2005–29(CF) (2006). https://doi.org/10.13140/rg.2.2.35126.50248

  29. Südholza, A.D., Kirkland, N.T., Buchheit, R.G., Birbilis, N.: Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochem. Solid-State Lett. 14(2), C5–C7 (2011)

    Article  Google Scholar 

  30. Nygren, M., Shen, Z.: On the preparation of bio, nano and structural ceramics and composites by spark plasma sintering. Solid State Sci. 5, 125–131 (2003)

    Article  CAS  Google Scholar 

  31. Tokita, M.: Trends in advanced SPS spark plasma sintering systems and technology. J. Soc. Powder Technol. Jpn. 30, 790–804 (1993)

    Article  CAS  Google Scholar 

  32. Groza, J.R., Zavaliangos, A.: Sintering activation by external electrical field. Mater. Sci. Eng. A 287, 171–177 (2000)

    Article  Google Scholar 

  33. Lesz, S., Kremzer, M., Gołombek, K., Nowosielski, R.: Influence of milling time on amorphization of Mg-Zn-Ca powders synthesized by mechanical alloying technique. Arch. Metall. Mater. 63(2), 839–845 (2018)

    Google Scholar 

  34. Hanawalt, J.D., Rinn, H.W.: Identification of crystalline materials: classification and use of X-ray diffraction patterns. Powder Diffr. 1, 2–6 (1986)

    Google Scholar 

  35. Hanawalt, J.D.: Manual search/match methods for powder diffraction in 1986. Powder Diffr. 1, 7–13 (1986)

    Article  CAS  Google Scholar 

  36. PN-H-04320: Static test of metal compression (1957)

    Google Scholar 

  37. Dewidar, M.: Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications. Int. J. Mech. Mechatron. Eng. IJMME-IJENS 12(1), 10–24 (2012)

    Google Scholar 

  38. Zhang, Y., Zhang, M.: Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J. Biomed. Mater. Res. 61(1), 1–8 (2002)

    Article  CAS  Google Scholar 

  39. Zberg, B., Uggowitzer, P.J., Loffler, J.F.: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887–891 (2009)

    Article  CAS  Google Scholar 

  40. Nowosielski, R., Babilas, R., Cesarz-Andreczke, K., Gawlas-Mucha, A., Lesz, S., Sakiewicz, P.: Resorbable Materials for Medical Implants. Silesian University of Technology Press, Gliwice (2017). (in Polish)

    Google Scholar 

  41. Lesz, S., Kraczla, J., Nowosielski, R.: Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications. Arch. Civ. Mech. Eng. 18(4), 1288–1299 (2018)

    Article  Google Scholar 

  42. DeGarmo, P.E.: Materials and Processes in Manufacturing, 5th edn. Collin Macmillan, New York (1979)

    Google Scholar 

  43. Sunil, B.R., Ganapathy, C., Kumar, T.S., Chakkingal, U.: Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. J. Mech. Behav. Biomed. Mater. 40, 178–189 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported with statutory funds of Faculty of Mechanical Engineering of Silesian University of Technology in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Lesz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lesz, S., Kraczla, J., Nowosielski, R. (2019). Synthesis of Mg–Zn–Ca Alloy by the Spark Plasma Sintering. In: Silva, L. (eds) Materials Design and Applications II. Advanced Structured Materials, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-02257-0_7

Download citation

Publish with us

Policies and ethics