Skip to main content

Mechanical Characterization of Film/Substrate Materials Using Nanoindentation Technique

  • Chapter
  • First Online:
Materials Design and Applications II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 98))

Abstract

In the present paper, mechanical properties of multilayer coatings were investigated. To that end, an analytical model dedicated for characterizing the thin multilayer behaviors was considered. In this study, the nanoindentation tests on film/substrate material systems were systematically investigated using finite element modeling (FEM). Hence, the considered model of Mercier et al. is efficient for measuring meaningful mechanical properties of thin film materials up to a critical ratio Ef/Es = 1.18 (with Ef the Young’s modulus of the film and Es the Young’s modulus of the substrate). But, for Ef/Es ≥ 1.18 a divergence of the model was observed. The main error is caused by a wrong estimation of the contact surface Ac between the indenter tip and the film surface. As a matter of fact, for a soft film on a hard substrate (Ef/Es < 1.18) the deformation is almost localized at the film. However, for Ef/Es ≥ 1.18 the deformation spreads at the substrate which induces a wrong value of contact surface Ac.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amaya-Roncancio, S., Restrepo-Parra, E., Devia-Narvaez, D.M., Arias-Mateus, D.F., Gómez-Hermida, M.M.: Molecular dynamics simulation of nanoindentation in Cr, Al layers and Al/ Cr bilayers, using a hard spherical nanoindenter. DYNA. 81, 102–107 (2014)

    Google Scholar 

  2. Azadi, M., Rouhaghdam, A.S., Ahangarani, S., Mofidi, H.H.: Mechanical behavior of TiN/TiC multilayer coatings fabricated by plasma assisted chemical vapor deposition on AISI H13 hot work tool steel. Surf. Coat. Technol. 245, 156–166 (2014)

    Article  CAS  Google Scholar 

  3. Chakroun, N., Tekaya, A., Belhadjsalah, H., Benameur, T.: Measuring elastic properties of the constituent multilayer coatings for different modulation periods. Int. J. Appl. Mech. 10 (2018)

    Google Scholar 

  4. Inui, N., Mochiji, K., Moritani, K.: A nondestructive method for probing mechanical properties of a thin film using impacts with nanoclusters. Int. J. Appl. Mech. 8, 1650041 (2016)

    Article  Google Scholar 

  5. Kumar, A., Zeng, K.: Alternative methods to extract the hardness and elastic modulus of thin films from nanoindentation load-displacement data. Int. J. Appl. Mech. 2, 41–68 (2010)

    Article  Google Scholar 

  6. Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments (1986)

    Google Scholar 

  7. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  8. Jung, Y.G., Lawn, B.R., Martyniuk, M., Huang, H., Hu, X.Z.: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19, 3076–3080 (2004)

    Article  CAS  Google Scholar 

  9. Bull, S.J.: A simple method for the assessment of the contact modulus for coated systems. Philos. Mag. 95, 1907–1927 (2015)

    Article  CAS  Google Scholar 

  10. Mercier, D., Mandrillon, V., Verdier, M., Brechet, Y.: Mesure de module d’Young d’un film mince à partir de mesures expérimentales de nanoindentation réalisées sur des systèmes multicouches. Matériaux Tech. 99, 169–178 (2011)

    Article  CAS  Google Scholar 

  11. Chakroun, N., Tekaya, A., Belhadjsalah, H., Benameur, T.: A new inverse analysis method for identifying the elastic properties of thin films considering thickness and substrate effects simultaneously. Int. J. Appl. Mech. 9, 1750096 (2017)

    Article  Google Scholar 

  12. Liao, Y., Zhou, Y., Huang, Y., Jiang, L.: Measuring elastic-plastic properties of thin films on elastic-plastic substrates by sharp indentation. Mech. Mater. 41, 308–318 (2009)

    Article  Google Scholar 

  13. Bec, S., Tonck, A., Georges, J.-M., Georges, E., Loubet, J.-L.: Improvements in the indentation method with a surface force apparatus. Philos. Mag. A 74, 1061–1072 (1996). https://doi.org/10.1080/01418619608239707

  14. ABAQUS Version 6.14, Dessault systèmes simulia corp., Providence, RI, USA (2014)

    Google Scholar 

  15. Jayaraman, S., Hahn, G.T., Oliver, W.C., Rubin, C.A., Bastias, P.C.: Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests. Int. J. Solids Struct. 35, 365–381 (1998)

    Google Scholar 

  16. Cheng, Y.T., Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R Rep. 44, 91–150 (2004)

    Article  Google Scholar 

  17. Pelletier, H., Krier, J., Mille, P.: Characterization of mechanical properties of thin films using nanoindentation test. Mech. Mater. 38, 1182–1198 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Chakroun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakroun, N., Belhadjsalah, H. (2019). Mechanical Characterization of Film/Substrate Materials Using Nanoindentation Technique. In: Silva, L. (eds) Materials Design and Applications II. Advanced Structured Materials, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-02257-0_31

Download citation

Publish with us

Policies and ethics