Skip to main content

Analysis of the Semi-circular Bend (SCB) Specimen: Finite Element Method Determination of T-stress, KI and KII

  • Chapter
  • First Online:
Materials Design and Applications II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 98))

  • 872 Accesses

Abstract

The semi-circular specimen under three-point bending loading (SCB specimen) may be used for determining mode I and mixed-mode (I and II) fracture toughness for brittle materials; this subject is covered in several references. This paper presents T-stress and stress intensity factor for SCB specimen in mode I and mixed-mode (I and II), exploring direct uses of finite element method to calculate those parameters. The commercial FE software ABAQUS was used to model the SCB specimen. Several cases including different crack lengths for investigating mode I, various crack angles for mixed-mode (I and II) and T-stress are presented. Since SCB specimen is loaded in bending, a comparison of the SCB and SE (B) specimen (ASTM E399-08 standard) was performed for mode I, discussing dimensions and amount of material involved. Finally, the result obtained from the presented finite element model are compared with results from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamson, R.M., Dempsey, J.P., Mulmule, S.V.: Fracture analysis of semi-circular and semi-circular-bend geometries. Int. J. Fract. 77(3), 213–222 (1996)

    Article  Google Scholar 

  2. Lim, I.L., Johnston, I.W., Choi, S.K.: Stress intensity factors for semi-circular specimens under three-point bending. Eng. Fract. Mech. 44, 363–382 (1993)

    Article  Google Scholar 

  3. Chong, K.R., Kuruppu, M.D.: New specimen for fracture toughness determination of rock and other materials. Int. J. Fract. 13–25 (1984)

    Google Scholar 

  4. Whittaker, B.N., Singh, R.N., Sun, G.X.: Rock Fracture Mechanics-Concepts Design and Applications. Elsevier, Amsterdam (1992)

    Google Scholar 

  5. Sun, G.X., Whittaker, B.N., Singh, R.N.: Use of the Brazilian disk test for determining the mixed-mode I-II fracture toughness envelope of rock. In: Proceedings of International Conference on Mechanics of Jointed and Faulted Rocks, Austria, pp. 447–454 (1990)

    Google Scholar 

  6. Chong, K.P., Kuruppu, M.D., Kuszmaul, J.S.: Fracture toughness determination of rocks with core-based specimens SEM/RILEM. International Conference on Fracture of Concrete and Rock, Texas, pp. 13–25 (1987)

    Google Scholar 

  7. Ayatollahi, M.R., Aliha, M.R.M., Hassani, M.M.: Mixed mode brittle fracture in PMMA-an experimental study using SCB specimens. Mater. Sci. Eng. A 417(1–2), 348–356 (2006)

    Article  Google Scholar 

  8. Aliha, M.R.M., Ayatollahi, M.R., Akbardoost, J.: Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech. Rock Eng. 45(1), 65–74 (2012)

    Article  Google Scholar 

  9. Alih, M.R.M., Ayatollahi, M.R., Smith, D.J., Pavier, M.J.: Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng. Fract. Mech. 77(11), 2200–2212 (2010)

    Article  Google Scholar 

  10. Xie, Yousheng, Cao, Ping, Jin, Jin, Wang, Min: Mixed mode fracture analysis of semi-circular bend (SCB) specimen: a numerical study based on extended finite element method. Comput. Geotech. 82, 157–172 (2017)

    Article  Google Scholar 

  11. “Standard Test Method for Measurement of Fracture Toughness,” ASTM E 1820, ASTM International, West Conshohocken, PA (2015)

    Google Scholar 

  12. Williams, M.L.: On the stress distribution at the base of a stationary crack. J. Appl. Mech. 24, 109–114 (1957)

    Google Scholar 

  13. Yehia, N.A.B., Shephard, M.S.: On the effect of quarter-point element size on fracture criteria. Int. J. Numer. Meth. Eng. 21, 1911–1924 (1985)

    Article  Google Scholar 

  14. Lim, I.L., Johnston, I.W., Choi, S.K.: Comparison between various displacement-based stress intensity factor computation techniques. Int. J. Fract. 58, 193–210 (1992)

    Article  Google Scholar 

  15. Chan, S.K., Tuba, I.S., Wilson, W.K.: On the finite element method in linear fracture mechanics. Eng. Fract. Mech. 2(1), 1–17 (1970)

    Article  Google Scholar 

  16. Abaqus, User’s Manual 6.14, Pawtucket, RI, USA: Pawtucket, RI, USA (2016)

    Google Scholar 

  17. Davenport, J.C.W., Smith, D.J.: A study of superimposed fracture modes I, II and III on PMMA. Fatigue Fract. Eng. Mater. Struct. 16, 1125 (1993)

    Article  CAS  Google Scholar 

  18. Chong, K.P., Kuruppu, M.D.: New method to determine the fracture toughness of rocks and oil shale. In: SME-AIME Fall Meeting Denver, Colorado, vol. 278, pp. 1853–1857 (1984)

    Google Scholar 

  19. Lim, I.L., Johnston, W.: Stress intensity factors for semi-circular specimens under three-point bending. Eng. Fract. Mech. 44(3), 363–382 (1993)

    Article  Google Scholar 

  20. Webb, J.E., Widjaja, S.: R-curve behavior in porous cordierite honeycombs. Ceram. Eng. Sci. Proc. 7(29), 339–348 (2009)

    Google Scholar 

  21. Chong, K.P., Kuruppu, M.D.: A new specimen for mixed-mode fracture investigation of geomaterials. Eng. Fract. Mech. 30, 701–712 (1988)

    Article  Google Scholar 

  22. Quintana-Alonso, I., Mai, S.P., Fleck, N.A., Oakes, D.C.H., Twigg, M.V.: The fracture toughness of a cordierite square lattice. Acta Mater. 58, 201–207 (2010)

    Article  CAS  Google Scholar 

  23. Huang, J.S., Chiang, M.S.: Effects of microstructure, specimen and loading geometries on KIc of brittle honeycombs. Eng. Fract. Mech. 54(6), 813–821 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Shahabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahabi, E., de Castro, P.M.S.T. (2019). Analysis of the Semi-circular Bend (SCB) Specimen: Finite Element Method Determination of T-stress, KI and KII. In: Silva, L. (eds) Materials Design and Applications II. Advanced Structured Materials, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-030-02257-0_27

Download citation

Publish with us

Policies and ethics