Skip to main content

Physical Exercise and Heat Shock Proteins

  • Chapter
  • First Online:
Chaperokine Activity of Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 16))

Abstract

Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. Heat shock proteins (HSP) are a group of cytoprotective proteins critical in the maintenance of protein and cellular homeostasis and protect the cell against further insults. HSP also can actively release to circulation and function as chaperokine. It has become suggested that they induced or activated with acute exercise or after chronic exercise training. It seems that a combination of thermal, oxidative and metabolic stress and muscle damage involved in exercise-induced HSP. These chaperones can play important role in biological response and adaptation by exercise. It is well known that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. For example stress response get disturbed in some conditions such as, cancer, diabetes and Alzheimer’s, furthermore in conditions that may stimulated disease such as aging. In the present chapter we discussed the role of exercise on these classes of chaperones in biology of exercise and human diseases. Exercise training, by improving the level of HSP, can help to amplify the stress response. These observations provided an opportunity to exploit protective role of HSP health and physical performance. Therefore, identifying the biological effects of these chaperons in exercise can lead to a greater understanding of the mechanisms of exercise in medicine and exercise adaptation biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADT:

Androgen deprivation therapy

BiP:

Immunoglobulin binding protein

CCT:

Chaperonin containing TCP-1 beta subunit

CK:

Creatine kinase

CRP:

C reactive protein

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

FOXOs:

Forkhead box protein O1

GRP75:

Glucose-regulated protein 75

GS:

Glycogen synthase

GSK3αm:

Glycogen synthase kinases α

HSF:

Heat shock factor

HSF1:

Heat shock factor1

HSP:

Heat shock proteins

IKK:

Inhibitor of NF-kb kinase

IL-6:

Interleukin-6

IRE1a:

Inositol-requiring transmembrane kinase/endonuclease-1

JNK:

c-Jun NH2-terminal kinase

NFkB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NGEMP:

Nuclear genes encoding mitochondrial proteins

NP22:

Neuronal protein 22

P13K/AKT:

Phosphoinositide 3-kinase-Akt

p38 MAPK:

P38 mitogen-activated protein kinases

PGC-1:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SIRT1:

Silent mating type information regulation 2 homolog

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor alpha

TRL:

Toll like receptor

UPR:

Unfolded protein response

References

  • Abubaker J, Tiss A, Abu-Farha M et al (2013) DNAJB3/HSP-40 cochaperone is downregulated in obese humans and is restored by physical exercise. PLoS One 8(7):e69217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aceros H, Farah G, Cobos-Puc L (2011) Moxonidine improves cardiac structure and performance in SHR through inhibition of cytokines, p38 MAPK and Akt. Br J Pharmacol 164:946–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adrie C, Ritcher C, Bachelet M (2000) Contrasting effects of NO and peroxynitrites on HSP70 expression and apoptosis in human monocyctes. Am J Physiol 279:C452–C460

    Article  CAS  Google Scholar 

  • Akira S, Taga T, Kishimoto T (1993) Interleukin-6 in biology and medicine. Adv Immunol 54:1–78

    Article  CAS  PubMed  Google Scholar 

  • Aprahamian I, Stella F, Forlenza OV (2013) New treatment strategies for Alzheimer’s disease: is there a hope? Indian J Med Res 138:449–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Archer EA, Von-Schulze TA, Geiger CP (2018) Exercise, heat shock proteins and insulin resistance. Phil Trans R Soc B 373(1738), pii20160529

    Article  CAS  Google Scholar 

  • Arrigo AP, Welch WJ (1987) Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem 262:15359–15369

    CAS  PubMed  Google Scholar 

  • Asea A (2006) Initiation of the immune response by extracellular Hsp72: chaperokine activity of Hsp72. Curr Immunol Rev 2(3):209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW et al (2000a) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435

    Article  CAS  PubMed  Google Scholar 

  • Asea A, Kabingu E, Ann Stevenson M, Calderwood SK (2000b) HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones 5(5):425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Baré O, Auron PE, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70 role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277(17):15028–15034

    Article  CAS  PubMed  Google Scholar 

  • Atalay M, Laaksonen DE (2002) Diabetes, oxidative stress and physical exercise. J Sport Sci Med 1(1):1–14

    Google Scholar 

  • Baines CP, Molkentin JD (2005) Stress signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62

    Article  CAS  PubMed  Google Scholar 

  • Balin BJ, Hudson AP (2014) Etiology and pathogenesis of late-onset Alzheimer’s disease. Curr Allergy Asthma Rep 14(3):417

    Article  PubMed  Google Scholar 

  • Barone R, Macaluso F, Sangiorgi C (2016) Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep 6:19781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann RP, Mizzen LE, Welch WJ (1990) Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248:850–854

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Benini R, Prado-Nunes PR, Orsatti CL, Barcelos LC, Orsatti FL (2015) Influence of sex on cytokines, heat shock protein and oxidative stress markers in response to an acute total body resistance exercise protocol. J Exerc Sci Fit 55(4):337–344

    CAS  Google Scholar 

  • Benjamin IJ, Horie S, Greenberg ML et al (1992) Induction of stress proteins in cultured myogenic cells: molecular signals for the activation of heat shock transcription factor during ischemia. J Clin Invest 89:1685–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berruti G, Perego L, Borgonovo B, Martegani E (1998) MSJ-1, a new member of the DNAJ family of proteins, is a male germ cell-specific gene product. Exp Cell Res 239:430–441

    Article  CAS  PubMed  Google Scholar 

  • Beyer I, Njemini R, Bautmans I et al (2012) Inflammation-related muscle weakness and fatigue in geriatric patients. Exp Gerontol 47:52–59

    Article  CAS  PubMed  Google Scholar 

  • Boyd-Kimball D, Sultana R, Poon HF, Lynn BC, Casamenti F, Pepeu G, Klein JB, Butterfield DA (2005) Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid betapeptide (1–42) into rat brain: implications for Alzheimer’s disease. Neuroscience 132:313–324

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Scapagnini G, Colombrita C et al (2003) Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: a nutritional approach. Amino Acids 25:437–444

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, Fleshner M (2003) Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J Appl Physiol 94(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Campisi j, Leem TH, Greenwood BN, Hansen MK, Moraska A, Higgins K, smith TP, Fleshner M (2003) Habitual physical activity facilitates stress induced HSP72 induction in brain, peripheral and immune tissues. Am J Physiol 284:R520–R530

    CAS  Google Scholar 

  • Cappello F, Conway de Macario E, Marasa L, Zummo G, Macario AJ (2008) Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7(6):801–809

    Article  CAS  PubMed  Google Scholar 

  • Care A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls. cardiac hypertrophy. Nat Med 13:613–618

    Article  CAS  PubMed  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82:1524–1532

    Article  CAS  PubMed  Google Scholar 

  • Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A et al (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70(3):357–360

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Knowlton AA, Xu F, Wasser JS (2001) Activation of the heat shock response: relationship to energy metabolites. A (31)P NMR study in rat hearts. Am J Physiol Heart Circ Physiol 280(1):426–433

    Article  Google Scholar 

  • Chen S, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70- kilodalton heat shock protein in lyosomal degradation of intracellular proteins. Science 246:382–385

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39(4):412–423

    Article  PubMed  PubMed Central  Google Scholar 

  • De la-Monte SM, Wands JR (2009) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 6:1101–1113

    Google Scholar 

  • Demirel HA, Hamilton KL, Shanely RA, Tumer N, Koroly MJ, Powers SK (2003) Age and attenuation of exercise-induced myocardial HSP72 accumulation. Am J Physiol Heart Circ Physiol 285(4):1609–1615

    Article  Google Scholar 

  • Dimauro I, Mercatelli N, Caporossi D (2016) Exercise induced ROS in heat shock proteins response. Free Radic Biol Med 98:46–55

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Vaynman S, Souda P, Whitelegge JP, Gomez‐Pinilla F (2006) Exercise affects energy metabolism and neural plasticity‐related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci 24(5):1265–1276

    Article  PubMed  Google Scholar 

  • Dodd SL, Hain B, Senf SM, Judge AR (2009) Hsp27 inhibits IKK beta-induced NF-kappa B activity and skeletal muscle atrophy. FASEB J 23:3415–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobedo J, Pucci AM, Koh TJ (2004) HSP25 protects skeletal muscle cells against oxidative stress. Free Radic Biol Med 37:1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Feasson L, Stockholm D, Freyssenet D et al (2002) Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol 543:297–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Febbraio MA (2000) Does muscle function and metabolism affect exercise performance in the heat? Exerc Sport Sci Rev 28:171–176

    CAS  PubMed  Google Scholar 

  • Febbraio MA, Koukoulas I (2000) HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol 89(3):1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Febbraio MA, Steensberg A, Walsh R, Koukoulas I, van Hall G, Saltin B, Pedersen BK (2002) Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle. J Physiol 538:911–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Febbraio, M. A., Steensberg A, ., Keller, C., Starkie, R. L., Nielsen, H. B., Krustrup, P., Ott, P., Secher, N. H. Pedersen, B. K. (2003). Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol, 549, 607–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehrenbach E, Niess AM, Schlotz E, Passek F, Dickhuth HH, Northoff H (2000) Transcriptional and translational regulation of heat shock proteins in leukocytes of endurance runners. J Appl Physiol 89(2):704–710

    Article  CAS  PubMed  Google Scholar 

  • Fehrenbach E, Niess AM, Voelker K, Northoff H, Mooren FC (2005) Exercise intensity and duration affect blood soluble HSP72. Int J Sports Med 26(07):552–557

    Article  CAS  PubMed  Google Scholar 

  • Fehrenbach E, Northoff H (2001) Free radicals, exercise, apoptosis, and heat shock proteins. Exerc Immunol Rev 7:66–89

    CAS  PubMed  Google Scholar 

  • Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12(4):249–256

    Article  PubMed  Google Scholar 

  • Fischer CP, Hiscock NJ, Basu S et al (2006) Vitamin E isoform-specific inhibition of the exercise-induced heat shock protein 72 expression in humans. J Appl Physiol 100:1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Fittipaldi S, Dimauro I, Mercatelli N, Caporossi D (2014) Role of exercise-induced reactive oxygen species in the modulation of heat shock protein response. Free Radic Res 48:52–70

    Article  CAS  PubMed  Google Scholar 

  • Fleshner M, Campisi J, Johnson JD (2003) Can exercise stress facilitate innate immunity? A functional role for stress-induced extracellular Hsp72. Exerc Immunol Rev 9:6–24

    PubMed  Google Scholar 

  • Folkesson M, Mackey AL, Holm L et al (2008) Immunohistochemical changes in the expression of HSP27 in exercised human vastus lateralis muscle. Acta Physiol 194:215–222

    Article  CAS  PubMed  Google Scholar 

  • Fuqua SA, Oesterreich S, Hilsenbeck SG, Von Hoff DD, Eckardt J, Osborne CK (1994) Heat shock proteins and drug resistance. Breast Cancer Res Treat 32(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Gandy S (2002) Molecular basis for anti-amyloid therapy in the prevention and treatment of Alzheimer’s disease. Neurobiol Aging 23:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Garcia JJ, Martin-Cordero L, Hinchado MD, Bote ME, Ortega E (2013) Effects of habitual exercise on the eHsp72-induced release of inflammatory cytokines by macrophages from obese Zucker rats. Int J Sports Med 34(06):559–564

    CAS  PubMed  Google Scholar 

  • Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation 122(12):1221–1238

    Article  PubMed  Google Scholar 

  • Geiger PC, Gupte AA (2011) Heat shock proteins are important mediators of skeletal muscle insulin sensitivity. Exerc Sport Sci Rev 39:34–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Gjovaag TF, Dahl HA (2006) Effect of training and detraining on the expression of heat shock proteins in m. triceps brachii of untrained males and females. Eur J Appl Physiol 98:310–322

    Article  CAS  PubMed  Google Scholar 

  • Golbidi S, Laher I (2011) Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract 2011:972807

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez B, Hernando R, Manso R (2000) Stress proteins of 70kDa in chronically exercised skeletal muscle. Eur J Phys 440:42–49

    Article  CAS  Google Scholar 

  • Gorman AM, Heavey B, Creagh E, Cotter TG, Samali A (1999) Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Lett 445:98–102

    Article  CAS  PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman SD, Glover CVC, Allis CD, Gorovsky MA (1980) Heat shock, deciliation and release from anoxia induce the synthesis of the same polypeptides in starved T. pyriformis. Cell 22:299–307

    Article  CAS  PubMed  Google Scholar 

  • Hageman J, Van Waarde MA, Zylicz A, Walerych D, Kampinga HH (2011) The diverse members of the mammalian HSP70 machine show distinct chaperone like activities. Biochem J 435:127–142

    Article  CAS  PubMed  Google Scholar 

  • Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, SK P (2003) Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 34:800–809

    Article  CAS  PubMed  Google Scholar 

  • Hamilton KL, Gupta S, Knowlton AA (2004) Estrogen and regulation of heat shock protein expression in female cardiomyocytes: cross-talk with NF kappa B signaling. J Mol Cell Cardiol 36(4):577–584

    Article  CAS  PubMed  Google Scholar 

  • Harris MB, Starnes JW (2001) Effects of body temperature during exercise on myocardial adaptations. Am J Phys 280:2271–2280

    Google Scholar 

  • Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. NeuroMolecular Med 4(1–2):21–35

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Hargreaves M, Joyner MJ, Zierath JR (2014) Integrative biology of exercise. Cell 159:738–749

    Article  CAS  PubMed  Google Scholar 

  • Henstridge CD, Febbraio AM, Hargreaves M (2016) Heat shock proteins and exercise adaptations. Our knowledge thus far and the road still ahead. J Appl Physiol 120:683–691

    Article  CAS  PubMed  Google Scholar 

  • Hernando R, Manso R (1997) Muscle fibre stress in response to exercise: synthesis, accumulation and isoform transitions of 70‐kDa heat‐shock proteins. Eur J Biochem 243(1–2):460–467

    Article  CAS  PubMed  Google Scholar 

  • Hood DA (2001) Contractile activity induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1031–1035

    Article  Google Scholar 

  • Hooper PL, Balogh G, Rivas E (2014) The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 19(4):447–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins EM, Davis CF, Van-Tieghem RM, Whalen JP, Bucci JD (2012) Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience 26(215):59–68

    Article  CAS  Google Scholar 

  • Huey KA, Mc-Call GE, Zhong H, Roy RR (2007) Modulation of HSP25 and TNF-alpha during the early stages of functional overload of a rat slow and fast muscle. J Appl Physiol 102:2307–2314

    Article  CAS  PubMed  Google Scholar 

  • Isanejad A, Saraf HZ, Mahdavi M, Gharakhanlou R, Shamsi MM, Paulsen G (2015) The effect of endurance training and downhill running on the expression of IL-1b, IL-6, and TNF-α and HSP72 in rat skeletal muscle. Cytokine 73:302–308

    Article  CAS  PubMed  Google Scholar 

  • Jackson MJ (2005) Reactive oxygen species and redox-reulation of skeletal muscle adaptations to exercise. Philos Trans R Soc Lond Biol Sci 360:2285–2291

    Article  CAS  Google Scholar 

  • Jackson MJ, Khassaf M, Vasilaki A, McArdle F, McArdle A (2004) Vitamin E and the oxidative stress of exercise. Ann N Y Acad Sci 1031:158–168

    Article  CAS  PubMed  Google Scholar 

  • Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Jayaraman M, Kannayiram G, Rajadas J (2008) Amyloid toxicity in skeletal myoblasts: Implications for inclusion-body myositis. Arch Biochem Biophys 474(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • Jones Q, S Voegeli T, Li G, Chen Y, William Currie R (2011) Heat shock proteins protect against ischemia and inflammation through multiple mechanisms. Inflamm Allergy-Drug Targets (Formerly Curr Drug Targets-Inflamm Allergy) 10(4):247–259

    CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  • Kane JK, Konu O, Ma JZ, Li MD (2004) Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain. Brain Res Mol Brain Res 132:181–191

    Article  CAS  PubMed  Google Scholar 

  • Karvinen S, Silvennoinen M, Vainio P et al (2016) Effects of intrinsic aerobic capacity, aging and voluntary running on skeletal muscle sirtuins and heat shock proteins. Exp Gerontol 79:46–54

    Article  CAS  PubMed  Google Scholar 

  • Katschinski DM (2004) On heat and cells and proteins. News Physiol Sci 19:11–15

    CAS  PubMed  Google Scholar 

  • Kavazis AN, Smuder AJ, Min K et al (2010) Short-term exercise training protects against doxorubicin induced cardiac mitochondrial damage independent of HSP72. Am J Physiol Heart Circ Physiol 299:1515–1524

    Article  CAS  Google Scholar 

  • Kayani AC, Close GL, Jackson MJ, McArdle A (2008) Prolonged treadmill training increases HSP70 in skeletal muscle but does not affect age-related functional deficits. Am J Physiol Regul Integr Comp Physiol 294:568–576

    Article  CAS  Google Scholar 

  • Kregel KC (2002) Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Phys 92(5):2177–2186

    CAS  Google Scholar 

  • Khassaf M, McArdle A, Esanu C et al (2003) Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol 549:645–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KB, Kim MH, Lee DJ (2004) The effect of exercise in cool, control and hot environments on cardioprotective HSP70 induction. J Physiol Anthropol Appl Hum Sci 23:225–230

    Article  Google Scholar 

  • Ko IG, Kim SE, Kim CJ, Jee YS (2013) Treadmill exercise alleviates aging-induced apoptosis in rat cardiac myocytes. Int J Gerontol 7:152–157

    Article  Google Scholar 

  • Koo HJ, Kwon SN, Kang BE et al (2013) Neuroprotective effects of treadmill exercise on BDNF and PI3-K/Akt signaling pathway in the cortex of transgenic mice model of Alzheimer’s disease. J Exerc Nutr Biochem 17(4):151–160

    Article  Google Scholar 

  • Lancaster GI, Febbraio MA (2005) Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev 11:46–52

    PubMed  Google Scholar 

  • Lancaster GI, Møller K, Nielsen B, Secher NH, Febbraio MA, Nybo L (2004) Exercise induces the release of heat shock protein 72 from the human brain in vivo. Cell Stress Chaperones 9(3):276–280

    Article  CAS  Google Scholar 

  • Lawler JM, Hindle A (2011) Living in a box or call of the wild? Revisiting lifetime inactivity and sarcopenia. Antioxid Redox Signal 15:2529–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787

    Article  CAS  PubMed  Google Scholar 

  • Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH (2001) Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103:1787–1792

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Steinacker JM (2001) Changes in skeletal muscle heat shock proteins: pathological significance. Front Biosci 6:12–25

    Google Scholar 

  • Liu Y, Mayr S, Opitz-Gress A et al (1999) Human skeletal muscle HSP70 response to training in highly trained rowers. J Appl Physiol 86:101–104

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lormes W, Baur C et al (2000) Human skeletal muscle HSP70 response to physical training depends on exercise intensity. Int J Sports Med 21:351–355

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lormes W, Wang L, Reissnecker S, Steinacker JM (2004) Different skeletal muscle HSP70 responses to high-intensity strength training and low-intensity endurance training. Eur J Appl Physiol 91:330–335

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gampert L, Nething K, Steinacker JM (2006) Response and function of skeletal muscle heat shock protein 70. Front Biosci 11:2802–2827

    Article  CAS  PubMed  Google Scholar 

  • Locke M (1997) The cellular stress response to exercise: role of stress proteins. Exerc Sports Sci Rev 25:105–136

    Article  CAS  Google Scholar 

  • Locke M, Noble E (2002) Overview of the stress response. In: Exercise and stress response. CRC Press, Boca Raton, pp 8–19

    Google Scholar 

  • Locke M, Noble EG (2002) Exercise and stress response: the role of stress proteins. CRC Press LLC, Boca Raton

    Google Scholar 

  • Locke M, Tanguay RM (1996) Diminished heat shock response in the aged myocardium. Cell Stress Chaperones 1(4):251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locke M, Noble EG, Atkinson BG (1990) Exercising mammals synthesise stress proteins. Am J Physiol 258:C723–C729

    Article  CAS  PubMed  Google Scholar 

  • Luo J, McMullen JR, Sobkiw CL et al (2005) Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol Cell Biol 25:9491–9502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lustbader JW, Cirilli M, Lin C et al (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304(5669):448–452

    Article  CAS  PubMed  Google Scholar 

  • Lyashko VN, Chernicov VG, Ivanov VI, Ulmasov KA, Zatsepina OG, Evgenev MB (1994) Comparison of the heat shock response in ethnically and ecologically different human populations. Proc Ntl Acad Sci USA 91:2492–2495

    Article  Google Scholar 

  • Macario AJ, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. New Engl J Med 353:1489–1501

    Article  CAS  PubMed  Google Scholar 

  • Maglara AA, Vasilaki A, Jackson MJ et al (2003) Damage to developing mouse skeletal muscle myotubes in culture: protective role of heat shock proteins. J Physiol 548:837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malm C (2001) Exercise-induced muscle damage and inflammation: fact or fiction? Acta Physiol 171(3):233–239

    Article  CAS  Google Scholar 

  • Marber MS, Meistrel R, Chi SR, Sayen MR, Yellon DM, Dillman WH (1995) Overexpression of the rat inducible 70 k-Da heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Investig 95:1446–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Anal Technol Biomed Life Sci 827:65–75

    Article  CAS  Google Scholar 

  • Markuns J, Wojtaszewski JFP, Goodyear JL (1999) Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle. J Biol Chem 274(35):24896–24900

    Article  CAS  PubMed  Google Scholar 

  • Marshall HC, Ferguson RA, Nimmo MA (2006) Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot, humid environment. Cell Stress Chaperones 11(2):129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JL, Mestril R, Hilal-Dandan R, Brunton LL, Dillmann WH (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    Article  CAS  PubMed  Google Scholar 

  • Mattson JP, Ross CR, Kilgore JL, Musch TI (2000) Induction of mitochondrial stress proteins following treadmill running. Med Sci Sports Exerc 32(2):365–369

    Article  CAS  PubMed  Google Scholar 

  • McArdle A, Pattwell D, Vasilaki A et al (2001) Contractile activity- induced oxidative stress: cellular origin and adaptive responses. Am J Phys 280:C621–C627

    Article  CAS  Google Scholar 

  • McArdle F, Spiers S, Aldemir H, Vasilaki A, Beaver A, Iwanejko I, McArdle A, Jackson MJ (2004) Preconditioning of skeletal muscle against contractioninduced damage: the role of adaptations to oxidants in mice. J Physiol 561:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297:191–194

    Article  CAS  PubMed  Google Scholar 

  • Melkani GC, Cammarato A, Bernstein SI (2006) aB-crystallin maintains skeletal muscle myosin enzymatic activity and prevents its aggregation under heat shock stress. J Mol Biol 358:635–645

    Article  CAS  PubMed  Google Scholar 

  • Melling CJ, Krause MP, Noble EG (2006) PKA-mediated ERK1/2 inactivation and hsp70 gene expression following exercise. J Mol Cell Cardiol 41(5):816–822

    Article  CAS  PubMed  Google Scholar 

  • Melling CW, Thorp DT, Milne JK, Krause MP, Noble EG (2007) Exercise-mediated regulation of Hsp70 expression following aerobic exercise training. Am J Physiol Heart Circ Physiol 293:3692–3698

    Article  CAS  Google Scholar 

  • Millarski KL, Morimoto RI (1989) Mutational analysis of the human HSP70 protein: distinct domains for nuclear localization and ATP binding. J Cell Biol 109:1947–1962

    Article  Google Scholar 

  • Milne KJ, Noble EG (2002) Exercise-induced elevation of HSP70 is intensity dependent. J Appl Physiol 92:561–568

    Article  Google Scholar 

  • Moran M, Delgado J, Gonzalez B (2004) Responses of rat myocardial antioxidant defences and heat shock protein HSP72 induced by 12 and 24-week treadmill training. Acta Physiol Scand 180:157–166

    Article  CAS  PubMed  Google Scholar 

  • Morley JE, Abbatecola AM, Argiles JM et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12(6):403–409

    Article  PubMed  PubMed Central  Google Scholar 

  • Morton JP, Mac Laren DPM, Cable NT et al (2007) Elevated core and muscle temperature to levels comparable to exercise do not increase heat shock protein content of physically active men. Acta Physiol 190:319–327

    Article  CAS  Google Scholar 

  • Morton JP, Croft L, Bartlett J et al (2009a) Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does up-regulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol 106:1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Morton JP, Kayani AC, McArdle A, Drust B (2009b) The exercise-induced stress response of skeletal muscle, with specific emphasison humans. Sports Med 39(8):643–662

    Article  PubMed  Google Scholar 

  • Moser C, Schmidbauer C, Gürtler U, Gross C, Gehrmann M, Thonigs G et al (2002) Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide–activated, CD94 positive natural killer cells. Cell Stress Chaperones 7(4):365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  CAS  PubMed  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158(9):4341–4350

    CAS  PubMed  Google Scholar 

  • Murlasits Z, Cutlip RG, Geronilla KB, Rao KM, Wonderlin WF, Alway SE (2006) Resistance training increases heat shock protein levels in skeletal muscle of young and old rats. Exp Gerontol 41:398–406

    Article  CAS  PubMed  Google Scholar 

  • Muscaritoli M, Anker SD, Argiles J et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr (Edinb Scot) 29(2):154–159

    Article  CAS  Google Scholar 

  • Naito H, Powers SK, Demirel HA et al (2000) Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 88:359–363

    Article  CAS  PubMed  Google Scholar 

  • Najarzadegan MR, Ataei E, Akbarzadeh F et al (2016) The role of heat shock proteins in Alzheimer disease: a systematic review. J Syndr 3(1):6

    Google Scholar 

  • Nething K, Wang L, Liu Y, Lormes W, Steinacker JM (2004) Blunted HSP70 response to acute exercise in well trained skeletal muscle. Med Sci Sports Exerc 36:S318

    Google Scholar 

  • Nielsen JN, Wojtaszewski JF (2004) Regulation of glycogen synthase activity and phosphorylation by exercise. Proc Nutr Soc 63(2):233–237

    Article  CAS  PubMed  Google Scholar 

  • Niess AM, Dickhuth, Northoff H, Fehrenbach E (1999) Free radicals and oxidative stress in exercise-immunological aspects. Exerc Immunol Rev 5:22–56

    CAS  PubMed  Google Scholar 

  • Niess AM, Fehrenbach E, Schlotz E, Sommer M, Angres C, Tschositsch K (2002) Effects of RRR-alpha-tocopherolon leukocyte expression of HSP72 in response to exhaustive treadmill exercise. Int J Sports Med 23:445–452

    Article  CAS  PubMed  Google Scholar 

  • Nilsen ST, Thorsen L, Kirkegaard C, Ugelstad U, Fossa SD, Raastad S (2016) The effect of strength training on muscle cellular stress in prostate cancer patients on ADT. Endocr Connect 5(2):74–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble EG (2002) Heat shock proteins and their induction with exercise. In: Exercise and stress response. CRC Press, Boca Raton, pp 49–84

    Chapter  Google Scholar 

  • Noble EG, Milne KJ, Melling J (2008) Heat shock proteins and exercise: a primer. Appl Physiol Nutr Metab 33:1050–1065

    Article  CAS  PubMed  Google Scholar 

  • O’Neill DET, Aubrey FK, Zeldin DA, Michel RN, Noble EG (2006) Slower skeletal muscle phenotypes are critical for constitutive expression of HSP70 in overloaded rat plantaris muscle. J Appl Physiol 100:981–987

    Article  PubMed  Google Scholar 

  • Obinata T, Maruyama K, Sugita H, Kohama K, Ebashi S (1981) Dynamic aspects of structural proteins in vertebrate skeletal muscle. Muscle Nerve 4:456–488

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Sanada K, Machida S et al (2010) Resistance exercise training-induced muscle hypertrophy was associated with reduction of inflammatory markers in elderly women. Mediat Inflamm 2010:171023. https://doi.org/10.1155/2010/171023

    Article  CAS  Google Scholar 

  • Ogawa K, Kim HK, Shimizu T et al (2012) Plasma heat shock protein 72 as a biomarker of sarcopenia in elderly people. Cell Stress Chaperones 17:349–359

    Article  CAS  PubMed  Google Scholar 

  • Ogura Y, Naito H, Kurosaka M, Sugiura T, Aoki J, Katamoto S (2006) Sprint-interval training induces heat shock protein 72 in rat skeletal muscles. J Sports Sci Med 5:194–201

    PubMed  PubMed Central  Google Scholar 

  • Oishi Y, Taniguchi K, Matsumoto H et al (2002) Muscle type specific response of HSP60, HSP72 and HSC73 during recovery after elevation of muscle temperature. J Appl Physiol 92:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Oishi Y, Taniguchi K, Matsumoto H et al (2003) Differential responses of HSP to heat stress in slow and fast regions of rat gastrocnemius muscle. Muscle Nerve 28:587–594

    Article  CAS  PubMed  Google Scholar 

  • Ortega E, Hinchado MD, Martin-Cordero L, Asea A (2009) The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise. Stress 12(3):240–249

    Article  CAS  PubMed  Google Scholar 

  • Park KJ, Gaynor RB, Kwak YT (2003) Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activation. J Biol Chem 278:35272–35278

    Article  CAS  PubMed  Google Scholar 

  • Paroo Z, Haist JV, Karmazyn M, Noble EG (2002) Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response. Circ Res 90(8):911–917

    Article  CAS  PubMed  Google Scholar 

  • Paroo Z, Tiidus PM, Noble EG (1999) Estrogen attenuates HSP 72 expression in acutely exercised male rodents. Eur J Appl Physiol Occup Physiol 80(3):180–184

    Article  CAS  PubMed  Google Scholar 

  • Paulsen G, Hanssen KE, Ronnestad BR et al (2012) Strength training elevates HSP27, HSP70 and alphaB-crystallin levels in musculivastuslateralis and trapezius. Eur J Appl Physiol 112:1773–1782

    Article  CAS  PubMed  Google Scholar 

  • Pelham HR (1986) Speculations on the functions of the major heat shock and glucose related proteins. Cell 46:959–961

    Article  CAS  PubMed  Google Scholar 

  • Petriz BA, Gomes CP, Almeida JA, de Oliveira GP, Ribeiro FM, Pereira RW, Franco OL (2017) The effects of acute and chronic exercise on skeletal muscle proteome. J Cell Physiol 232(2):257–269

    Article  CAS  PubMed  Google Scholar 

  • Pockley AG (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Hamilton KL (2002) Heat shock proteins and reactive oxygen species. In: Exercise and stress response. CRC Press, Boca Raton, pp 128–140

    Google Scholar 

  • Powers SK, Kavazis AN, Deruisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288(2):R337–R344

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Locke M, Demirel HA (2001) Exercise, heat shock proteins, and myocardial protection from I-R injury. Med Sci Sports Exerc 33(3):386–392

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589:2129–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puntschart A, Vogt M, Widmer HR, Hoppeler H, Billeter R (1996) HSP70 expression in human skeletal muscle after exercise. Acta Physiol Scand 157:411–417

    Article  CAS  PubMed  Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 22:253–266

    Article  CAS  Google Scholar 

  • Rinaldi B, Corbi G, Boccuti S et al (2006) Exercise training affects age-induced changes in SOD and heat shock protein expression in rat heart. Exp Gerontol 41:764–770

    Article  CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  • Salo DC, Donovan CM, Davies KJA (1991) HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart and liver during exercise. Free Radic Biol Med 11:239–246

    Article  CAS  PubMed  Google Scholar 

  • Samali A, Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperone 3:228–236

    Article  CAS  Google Scholar 

  • Sammut IA, Jayakumar J, Latif N et al (2001) Heat stress contributes to the enhancement of cardiac mitochondrial complex activity. Am J Pathol 158:1821–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sciandra JJ, Subjeck JR (1983) The effect of glucose on protein synthesis and thermosensitvity in Chinese hamster ovary cells. J Biol Chem 258:12091–12093

    CAS  PubMed  Google Scholar 

  • Scott JM (2011) Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer—current evidence and underlying mechanisms. Circulation 124:642–650

    Article  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904

    Article  CAS  PubMed  Google Scholar 

  • Shamsi MM, Mahdavi M, Quinn SL, Gharakhanlou R, Isanegad A (2016) Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ-induced diabetic rats. Cell Stress Chaperone 21:783–791

    Article  CAS  Google Scholar 

  • Silver JT, Kowalchuk H, Noble EG (2012) hsp70 mRNA temporal localization in rat skeletal myofibers and blood vessels post-exercise. Cell Stress Chaperone 17:109–120

    Article  CAS  Google Scholar 

  • Siu PM, Alway SE (2005) Age-related apoptotic responses to stretch-induced hypertrophy in quail slow-tonic skeletal muscle. Am J Physiol Cell Physiol 289:1105–1113

    Article  CAS  Google Scholar 

  • Skidmore R, Gutierrez JA, Guerriero VJ, Kregel KC (1995) HSP70 induction during exercise and heat stress in rats: role of internal temperature. Am J Phys 268:92–97

    Google Scholar 

  • Smolka MB, Zoppi CC, Alves AA et al (2000) HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol 279:1539–1545

    Article  Google Scholar 

  • Sondermann H, Becker T, Mayhew M, Wieland F, Hartl FU (2000) Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 381(12):1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Soti C, Csermely P (2007) Aging cellular networks: chaperones as major participants. Exp Gerontol 42:113–119

    Article  CAS  PubMed  Google Scholar 

  • Soufi FG, Farajnia S, Aslanabadi N et al (2008) Long-term exercise training affects age induced changes in HSP70 and apoptosis in rat heart. Gen Physiol Biophys 27:263–270

    CAS  PubMed  Google Scholar 

  • Staib JL, Quindry JK, French JP, Criswell DS, Powers SK (2007) Increased temperature, not cardiac load, activates heat shock transcription factor 1 and heat shock protein 72 expression in the heart. Am J Physiol Regul Integr Comp Physiol 292:432–439

    Article  CAS  Google Scholar 

  • Starkie RL, Angus DJ, Rolland J, Hargreaves M, Febbraio MA (2000) Effect of prolonged submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. J Physiol 528:647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steensberg A, Dalsgaard MK, Secher NH, Pedersen BK (2006) Cerebrospinal fluid IL-6, HSP72, and TNF-alpha in exercising humans. Brain Behav Immun 20(6):585–589

    Article  CAS  PubMed  Google Scholar 

  • Stephanou A, Isenberg DA, Akira S, Kishimoto T, Latchman DS (1998) The nuclear factor interleukin-6 (NF-IL6) and signal transducer and activator of transcription 3 (STAT3) signalling pathways co-operate to mediate the activation of hsp90 gene by interleukin-6 but have opposite effects on its inducibility by heat shock. Biochem J 330:189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K, Yaffe MB (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci U S A 90:9422–9426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan GW, Sarembock IJ, Linden J (2000) The role of inflammation in vascular diseases. J Leukoc Biol 67(5):591–602

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Zhang J, Zhang J (2011) Rad GTPase induces cardiomyocyte apoptosis through the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun 409:52–57

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Smolenski RT, Jayakumar J, Murtuza B, Brand NY, Yacoub MH (2000) Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation 102(Suppl 3):111216–111221

    Google Scholar 

  • Tamura Y, Matsunaga Y, Masuda H et al (2014) Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 307:931–943

    Article  CAS  Google Scholar 

  • Tanonaka K, Toga W, Takahashi M, Yoshida H, Oikawa R, Takeo S (2004) Induction of heat shock protein 72 in the failing heart is attenuated after an exposure to heat shock. Mol Cell Biochem 259:211–215

    Article  CAS  PubMed  Google Scholar 

  • Taylor RP, Starnes JW (2003) Age, cell signalling and cardioprotection. Acta Physiol Scand 178:107–116

    Article  CAS  PubMed  Google Scholar 

  • Taylor RP, Harris MB, Starnes JW (1999) Acute exercise can improve cardioprotection without increasing heat shock protein content. Am J Physiol Heart Circ Physiol 276:1098–1102

    Article  Google Scholar 

  • Terry DF, Wyszynski DF, Nolan VG et al (2006) Serum heat shock protein 70 level as a biomarker of exceptional longevity. Mech Ageing Dev 127:862–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JR, Kenfield AS, Jimenez A (2016) Exercise-induced biochemical changes and their potential influence on cancer: a scientific review. Br J Sports Med 0:1–8

    Google Scholar 

  • Thompson HS, Maynard EB, Morales ER, Scordilis SP (2003) Exercise‐induced HSP27, HSP70 and MAPK responses in human skeletal muscle. Acta Physiol Scand 178(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosone puffs. J Mol Biol 84:389–398

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki T, Kobayashi T, Yoshihara H et al (2017) Attenuation of exercise-induced heat shock protein 72 expression blunts improvements in whole-body insulin resistance in rats with type 2 diabetes. Cell Stress Chaperones 22(2):263–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tupling AR, Bombardier E, Stewart RD et al (2007) Muscle fibre specific response of HSP70 expression in human quadriceps following acute isometric exercise. J Appl Physiol 103:2105–2111

    Article  CAS  PubMed  Google Scholar 

  • Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37(2):289–305

    Article  CAS  Google Scholar 

  • Tytell M (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperth 21(5):445–455

    Article  CAS  Google Scholar 

  • Vasilaki A, Jackson MJ, McArdle A (2002) Attenuated HSP70 response in skeletal muscle of aged rats following contractile activity. Muscle Nerve 25:902–905

    Article  CAS  PubMed  Google Scholar 

  • Vasilaki A, McArdle F, Iwanejko LM, McArdle A (2006) Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev 127:830–839

    Article  CAS  PubMed  Google Scholar 

  • Venojarvi M, Aunola S, Puhke R (2008) Exercise training with dietary counselling increases mitochondrial chaperone expression in middle-aged subjects with impaired glucose tolerance. BMC Endocr Disord 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum Hsp72 in humans. Cell Stress Chaperones 6(4):386–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters G, Ryan KL, Tehrany MR, Jones MB, Paulus LA, Mason PA (1998) HSP70 expression in the CNS in response to exercise and heat stress in rats. J Appl Physiol 84:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med 227(9):671–682

    Article  CAS  Google Scholar 

  • Weitzel G, Pilatus U, Rensing L (1985) Similar dose response of heat shock protein synthesis and intracellular pH change in yeast. Exp Cell Res 159:252–256

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ (1992) Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72:1063–1081

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ, Garrells JI, Thomas GP, Lin JJ, Feramisco JR (1983) Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose and Ca2+ ionophore regulated proteins. J Biol Chem 258:7102–7111

    CAS  PubMed  Google Scholar 

  • Westerheide SD, Anckar J, Stevens JR, Sistonen L, Morimoto RI (2009) Stress inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323(5917):1063–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G (2001) Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 280:249–258

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Yoshida N (2000) Vitamin E and leukocyte-endothelial cell interactions. Antioxid Redox Signal 2(4):821–825

    Article  CAS  PubMed  Google Scholar 

  • Zuo LI, Christofi FL, Wright VP, Liu CY, Merola AJ, Berliner LJ, Clanton TL (2000) Intra-and extracellular measurement of reactive oxygen species produced during heat stress in diaphragm muscle. Am J Physiol Cell Physiol 279(4):C1058–C1066

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Shahed University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Isanejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Isanejad, A., Amini, H. (2019). Physical Exercise and Heat Shock Proteins. In: Asea, A., Kaur, P. (eds) Chaperokine Activity of Heat Shock Proteins . Heat Shock Proteins, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-02254-9_12

Download citation

Publish with us

Policies and ethics