Skip to main content

Mean Value Analysis of Closed G-Networks with Signals

  • Conference paper
  • First Online:
Book cover Computer Performance Engineering (EPEW 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11178))

Included in the following conference series:

Abstract

We consider a closed network of queues with external signals. These signals trigger customer between queues and they arrive following a rate which depends on the number of active customers in the station. We consider three types of stations: they may have one server, an infinite number of servers or no servers at all. In that case, the customers behave like inert customers and they only react to signal. We prove that, under irreducibility conditions, such a network has a stationary distribution which is multiplicative. As the network is finite, all the states are not reachable and the distribution is known up to a normalization constant. To avoid the computation of this constant, we also prove a mean value analysis algorithm which allows to determine the average queue size and the average waiting time without computing the probabilities. We also present some extensions of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balsamo, S., Harrison, P.G., Marin, A.: A unifying approach to product-forms in networks with finite capacity constraints. In: Misra, V., Barford, P., Squillante, M.S. (eds.) SIGMETRICS 2010, Proceedings of the 2010 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 25–36. ACM, New York (2010)

    Google Scholar 

  2. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.: Queueing Networks and Markov Chains. Wiley, Hoboken (1998)

    Book  Google Scholar 

  3. Chao, X., Miyazawa, M., Pinedo, M.: Queueing Networks: Customers, Signals and Product Form Solutions. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  4. Dao Thi, T.H., Fourneau, J.M.: Stochastic automata networks with master/slave synchronization: product form and tensor. In: Al-Begain, K., Fiems, D., Horváth, G. (eds.) ASMTA 2009. LNCS, vol. 5513, pp. 279–293. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02205-0_20

    Chapter  Google Scholar 

  5. Do, T.V.: An initiative for a classified bibliography on G-networks. Perform. Eval. 68(4), 385–394 (2011)

    Article  Google Scholar 

  6. Fourneau, J.M.: Closed G-networks with resets: product form solution. In: Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007), Edinburgh, UK, pp. 287–296. IEEE Computer Society (2007)

    Google Scholar 

  7. Fourneau, J.-M.: Product form steady-state distribution for stochastic automata networks with domino synchronizations. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 110–124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87412-6_9

    Chapter  Google Scholar 

  8. Fourneau, J.M., Kloul, L., Quessette, F.: Multiple class G-networks with iterated deletions. Perform. Eval. 42(1), 1–20 (2000)

    Article  Google Scholar 

  9. Fourneau, J.M., Quessette, F.: Computing the steady-state distribution of G-networks with synchronized partial flushing. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 887–896. Springer, Heidelberg (2006). https://doi.org/10.1007/11902140_92

    Chapter  Google Scholar 

  10. Fourneau, J.M., Marin, A., Balsamo, S.: Modeling energy packets networks in the presence of failures. In: 24th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS, London, United Kingdom, pp. 144–153. IEEE Computer Society (2016)

    Google Scholar 

  11. Gelenbe, E.: Product-form queuing networks with negative and positive customers. J. Appl. Prob. 28, 656–663 (1991)

    Article  Google Scholar 

  12. Gelenbe, E.: G-networks with instantaneous customer movement. J. Appl. Prob. 30(3), 742–748 (1993)

    Article  Google Scholar 

  13. Gelenbe, E.: G-networks: an unifying model for queuing networks and neural networks. Ann. Oper. Res. 48(1–4), 433–461 (1994)

    Article  MathSciNet  Google Scholar 

  14. Gelenbe, E.: Energy packet networks: ICT based energy allocation and storage. In: Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds.) GreeNets 2011. LNICST, vol. 51, pp. 186–195. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33368-2_16

    Chapter  Google Scholar 

  15. Gelenbe, E.: A sensor node with energy harvesting. SIGMETRICS Perform. Eval. Rev. 42(2), 37–39 (2014)

    Article  Google Scholar 

  16. Gelenbe, E., Ceran, E.T.: Energy packet networks with energy harvesting. IEEE Access 4, 1321–1331 (2016)

    Article  Google Scholar 

  17. Gelenbe, E., Ceran, E.T.: Central or distributed energy storage for processors with energy harvesting. In: 2015 Sustainable Internet and ICT for Sustainability, SustainIT, pp. 1–3. IEEE (2015)

    Google Scholar 

  18. Gelenbe, E., Marin, A.: Interconnected wireless sensors with energy harvesting. In: Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp. 87–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18579-8_7

    Chapter  Google Scholar 

  19. Harrison, P.G.: Compositional reversed Markov processes, with applications to G-networks. Perform. Eval. 57(3), 379–408 (2004)

    Article  Google Scholar 

  20. Harrison, P.G., Patel, N.M.: Performance Modelling of Communication Networks and Computer Architectures. Addison-Wesley, Boston (1993)

    MATH  Google Scholar 

  21. Harrison, P.: Turning back time in Markovian process algebra. Theor. Comput. Sci. 290(3), 1947–1986 (2003)

    Article  MathSciNet  Google Scholar 

  22. Marin, A., Balsamo, S., Fourneau, J.: LB-networks: a model for dynamic load balancing in queueing networks. Perform. Eval. 115, 38–53 (2017)

    Article  Google Scholar 

  23. Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multichain queuing networks. J. ACM 27(2), 313–322 (1980)

    Article  MathSciNet  Google Scholar 

  24. Takahashi, R., Takuno, T., Hikihara, T.: Estimation of power packet transfer properties on indoor power line channel. Energies 5(7), 2141 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Fourneau .

Editor information

Editors and Affiliations

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Consider again the global balance equation at steady-state.

$$\begin{aligned} \pi (K,\varvec{x})[\sum \nolimits _{i \in {\mathcal{{F}}}}&\mu _i 1_{x_i>0} + \sum \nolimits _{i \in {\mathcal{{I}}}} \mu _i x_i + \lambda ^t (\sum \nolimits _{i \in {\mathcal{{F}}}} \frac{1_{x_i>0}}{K} + \sum \nolimits _{i \in {\mathcal{{I}}}\cup {\mathcal{{Z}}}} \frac{x_i}{K} )]&\\&= \sum \nolimits _{i \in {\mathcal{{F}}}} \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}\cup {\mathcal{{Z}}}} \mu _i \pi (K,\varvec{x} +\varvec{e_i} -\varvec{e_j}) \mathbf{R} [i,j] 1_{x_j>0}&[1] \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}\cup {\mathcal{{Z}}}} x_i \mu _i \pi (K,\varvec{x} +\varvec{e_i} -\varvec{e_j}) \mathbf{R} [i,j] 1_{x_j>0}&[2] \\&+ \sum \nolimits _{i \in {\mathcal{{F}}}} \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}\cup {\mathcal{{Z}}}} \pi (K,\varvec{x} +\varvec{e_i} -\varvec{e_j}) \mathbf{T} [i,j] 1_{x_j>0} \lambda ^t \frac{1_{x_i + 1>0}}{K}&[3] \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}\cup {\mathcal{{Z}}}} \pi (K,\varvec{x} +\varvec{e_i} -\varvec{e_j}) \mathbf{T} [i,j] 1_{x_j>0} \lambda ^t \frac{ {x_i + 1 }}{K}&[4] \\&+ \sum \nolimits _{i \in {\mathcal{{Z}}}} \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}\cup {\mathcal{{Z}}}} \pi (K,\varvec{x} +\varvec{e_i} -\varvec{e_j}) \mathbf{T} [i,j] 1_{x_j>0} \lambda ^t \frac{ {x_i + 1 }}{K}&[5]\\ \end{aligned}$$

Divide both sides by \(\pi (\varvec{x}) \) and take into account the multiplicative solution proposed in Eq. 1. As the probability depends on the type of station, we have to decompose the summation into three parts, based on the set of stations we consider. We also notice that \(1_{x_i + 1 >0} =1\) and that \(x_i 1_{x_i>0}= x_i\) and we simplify some terms.

$$\begin{aligned} \sum \nolimits _{i \in {\mathcal{{F}}}} \mu _i 1_{x_i>0}&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \mu _i x_i + \lambda ^t (\sum _{i \in {\mathcal{{F}}}} \frac{1_{x_i>0}}{K} + \sum \nolimits _{i \in {\mathcal{{I}}}\cup {\mathcal{{Z}}}} \frac{x_i}{K} )&~&\\&= \sum \nolimits _{i \in {\mathcal{{F}}}} \sum \nolimits _{j \in {\mathcal{{F}}}} \mu _i \rho _i/\rho _j \mathbf{R} [i,j] 1_{x_j>0}&[1] \\&+ \sum \nolimits _{i \in {\mathcal{{F}}}} \sum \nolimits _{j \in {\mathcal{{I}}}} \mu _i \rho _i/\rho _j x_j \mathbf{R} [i,j]&[2] \\&+ \sum \nolimits _{i \in {\mathcal{{F}}}} \sum \nolimits _{j \in {\mathcal{{Z}}}} \mu _i \rho _i/\gamma _j x_j \mathbf{R} [i,j]&[3] \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \sum \nolimits _{j \in {\mathcal{{F}}}} \mu _i \rho _i/\rho _j \mathbf{R} [i,j] 1_{x_j>0}&[4] \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \sum \nolimits _{j \in {\mathcal{{I}}}} \mu _i \rho _i/\rho _j x_j \mathbf{R} [i,j]&[5] \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \sum \nolimits _{j \in {\mathcal{{Z}}}} \mu _i \rho _i/\gamma _j x_j \mathbf{R} [i,j]&[6] \\&+ \sum \nolimits _{i \in {\mathcal{{F}}}} \sum \nolimits _{j \in {\mathcal{{F}}}} \rho _i/\rho _j \mathbf{T} [i,j] 1_{x_j>0} \lambda ^t \frac{1}{K}&[7] \\&+ \sum \nolimits _{i \in {\mathcal{{F}}}} \sum \nolimits _{j \in {\mathcal{{I}}}} \rho _i/\rho _j x_j \mathbf{T} [i,j] \lambda ^t \frac{1}{K}&[8] \\&+ \sum \nolimits _{i \in {\mathcal{{F}}}} \sum \nolimits _{j \in {\mathcal{{Z}}}} \rho _i/\gamma _j x_j \mathbf{T} [i,j] \lambda ^t \frac{1}{K}&[9] \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \sum \nolimits _{j \in {\mathcal{{F}}}} \rho _i/\rho _j \mathbf {T(i,j)} \mathbf{T} [i,j] \lambda ^t \frac{1}{K}&[10] \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \sum \nolimits _{j \in {\mathcal{{I}}}} \rho _i/\rho _j x_j \mathbf{T} [i,j] \lambda ^t \frac{ 1 }{K}&[11] \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \sum \nolimits _{j \in {\mathcal{{Z}}}} \rho _i/\gamma _j x_j \mathbf{T} [i,j] \lambda ^t \frac{ 1 }{K}&[12] \\&+ \sum \nolimits _{i \in {\mathcal{{Z}}}} \sum \nolimits _{j \in {\mathcal{{F}}}} \gamma _i/\rho _j \mathbf{T} [i,j] 1_{x_j>0} \lambda ^t \frac{ 1 }{K}&[13]\\&+ \sum \nolimits _{i \in {\mathcal{{Z}}}} \sum \nolimits _{j \in {\mathcal{{I}}}} \gamma _i/\rho _j x_j \mathbf{T} [i,j] \lambda ^t \frac{ 1 }{K}&[14]\\&+ \sum \nolimits _{i \in {\mathcal{{Z}}}} \sum \nolimits _{j \in {\mathcal{{Z}}}} \gamma _i/\gamma _j x_j \mathbf{T} [i,j] \lambda ^t \frac{ 1 }{K}&[15]\\ \end{aligned}$$

We exchange the role of indices i and j in all the terms of the r.h.s. and we factorize the terms (\(1+4+7+10+13\)), (\(2+5+8+11+14\)), (\(3+6+9+12+15\)):

$$\begin{aligned} \sum \nolimits _{i \in {\mathcal{{F}}}} \mu _i 1_{x_i>0}&+ \sum \nolimits _{i \in {\mathcal{{I}}}} \mu _i x_i + \lambda ^t (\sum \nolimits _{i \in {\mathcal{{F}}}} \frac{1_{x_i>0}}{K} + \sum \nolimits _{i \in {\mathcal{{I}}}\cup {\mathcal{{Z}}}} \frac{x_i}{K} )&\\ \\&= \sum \nolimits _{i \in {\mathcal{{F}}}} 1_{x_i>0} 1/\rho _i \left[ \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}} \mu _j \rho _j \mathbf{R} [j,i]~+~\sum \nolimits _{j \in {\mathcal{{F}}}} \rho _j \mathbf{T} [j,i] \frac{\lambda ^t}{K} \right.&\\ \\&\qquad \qquad \qquad \qquad \quad \left. +\,\sum \nolimits _{j \in {\mathcal{{I}}}} \rho _j \mathbf{T} [j,i] \frac{\lambda ^t}{K}~+~\sum \nolimits _{j \in {\mathcal{{Z}}}} \gamma _j \mathbf{T} [j,i] \frac{\lambda ^t}{K} \right]&\\ \\&+ \sum \nolimits _{i \in {\mathcal{{I}}}} x_i/\rho _i \left[ \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}} \mu _j \rho _j \mathbf{R} [j,i]~+~\sum \nolimits _{j \in {\mathcal{{F}}}} \rho _j \mathbf{T} [j,i] \frac{\lambda ^t}{K} \right.&\\ \\&\qquad \qquad \qquad \quad \left. +\,\sum \nolimits _{j \in {\mathcal{{I}}}} \rho _j \mathbf{T} [j,i] \frac{\lambda ^t}{K}~+~\sum \nolimits _{j \in {\mathcal{{Z}}}} \gamma _j \mathbf{T} [j,i] \frac{\lambda ^t}{K} \right]&\\&\\&+\sum \nolimits _{i \in {\mathcal{{Z}}}} x_i/\gamma _i \left[ \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}} \mu _j \rho _j \mathbf{R} [j,i]~+~\sum \nolimits _{j \in {\mathcal{{F}}}} \rho _j \mathbf{T} [j,i] \frac{ \lambda ^t }{K} \right.&\\ \\&\qquad \qquad \qquad \quad \left. \sum \nolimits _{j \in {\mathcal{{I}}}} \rho _j \mathbf{T} [j,i] \frac{\lambda ^t}{K}~+~\sum \nolimits _{j \in {\mathcal{{Z}}}} \gamma _j \mathbf{T} [j,i] \frac{\lambda ^t}{K}\right] .&\\&\\ \end{aligned}$$

The first and second term of the l.h.s. cancel with the first and second term of the r.h.s. due to the first flow equation (i.e. Eq. 2). It remains:

$$ \begin{array} {rcll} \lambda ^t \sum \nolimits _{i \in {\mathcal{{Z}}}} \frac{x_i}{K} &{} = &{}\sum \nolimits _{i \in {\mathcal{{Z}}}} x_i/\gamma _i \left[ \sum \nolimits _{j \in {\mathcal{{F}}}\cup {\mathcal{{I}}}} \mu _j \rho _j \mathbf{R} [j,i]~+~\sum \nolimits _{j \in {\mathcal{{F}}}} \rho _j \mathbf{T} [j,i] \frac{ \lambda ^t }{K} \right. &{} \\ \\ &{}&{}~\left. \sum \nolimits _{j \in {\mathcal{{I}}}} \rho _j \mathbf{T}[j,i] \frac{\lambda ^t}{K}~+~\sum \nolimits _{j \in {\mathcal{{Z}}}} \gamma _j \mathbf{T}[j,i] \frac{\lambda ^t}{K}\right] . &{} \\ &{}&{}&{} \\ \end{array} $$

And this last equation is equivalent to the second flow equation for station in \({\mathcal{{Z}}}\) (i.e. Eq. 3). And the proof is complete.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fourneau, JM. (2018). Mean Value Analysis of Closed G-Networks with Signals. In: Bakhshi, R., Ballarini, P., Barbot, B., Castel-Taleb, H., Remke, A. (eds) Computer Performance Engineering. EPEW 2018. Lecture Notes in Computer Science(), vol 11178. Springer, Cham. https://doi.org/10.1007/978-3-030-02227-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02227-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02226-6

  • Online ISBN: 978-3-030-02227-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics