Skip to main content

Time Series Retrieval Using DTW-Preserving Shapelets

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11223))

Included in the following conference series:

  • 597 Accesses

Abstract

Dynamic Time Warping (DTW) is a very popular similarity measure used for time series classification, retrieval or clustering. DTW is, however, a costly measure, and its application on numerous and/or very long time series is difficult in practice. This paper proposes a new approach for time series retrieval: time series are embedded into another space where the search procedure is less computationally demanding, while still accurate. This approach is based on transforming time series into high-dimensional vectors using DTW-preserving shapelets. That transform is such that the relative distance between the vectors in the Euclidean transformed space well reflects the corresponding DTW measurements in the original space. We also propose strategies for selecting a subset of shapelets in the transformed space, resulting in a trade-off between the complexity of the transformation and the accuracy of the retrieval. Experimental results using the well known UCR time series demonstrate the importance of this trade-off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)

    Article  MathSciNet  Google Scholar 

  2. Chen, Y., et al.: The UCR time series classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/

  3. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and mining of time series data: experimental comparison of representations and distance measures. PVLDB 1(2), 1542–1552 (2008)

    Google Scholar 

  4. Esling, P., Agón, C.: Time-series data mining. CSUR 45(1), 12:1–12:34 (2012)

    Article  Google Scholar 

  5. Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: KDD, pp. 392–401. ACM (2014)

    Google Scholar 

  6. Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. DMKD 28(4), 851–881 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Itakura, F.: Minimum prediction residual principle applied to speech recognition. IEEE Trans. Sig. Process. 23(1), 67–72 (1975)

    Article  Google Scholar 

  8. Keogh, E.J.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417. Morgan Kaufmann, Burlington (2002)

    Chapter  Google Scholar 

  9. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. KAIS 3(3), 263–286 (2001)

    MATH  Google Scholar 

  10. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. 50(6), 94:1–94:45 (2017)

    Article  Google Scholar 

  11. Lods, A., Malinowski, S., Tavenard, R., Amsaleg, L.: Learning DTW-preserving shapelets. In: Adams, N., Tucker, A., Weston, D. (eds.) IDA 2017. LNCS, vol. 10584, pp. 198–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68765-0_17

    Chapter  Google Scholar 

  12. Moradi, P., Rostami, M.: A graph theoretic approach for unsupervised feature selection. Eng. Appl. AI 44, 33–45 (2015)

    Google Scholar 

  13. Papapetrou, P., Athitsos, V., Potamias, M., Kollios, G., Gunopulos, D.: Embedding-based subsequence matching in time-series databases. TODS 36(3), 17:1–17:39 (2011)

    Article  Google Scholar 

  14. Rakthanmanon, T., et al.: Searching and mining trillions of time series subsequences under DTW. In: KDD, pp. 262–270. ACM (2012)

    Google Scholar 

  15. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  16. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Sig. Process. 26(1), 43–49 (1978)

    Article  Google Scholar 

  17. Shieh, J., Keogh, E.J.: iSAX: indexing and mining terabyte sized time series. In: KDD, pp. 623–631. ACM (2008)

    Google Scholar 

  18. Tan, C.W., Webb, G.I., Petitjean, F.: Indexing and classifying gigabytes of time series under time warping. In: SDM, pp. 282–290. SIAM (2017)

    Chapter  Google Scholar 

  19. Tavenard, R.: tslearn: a machine learning toolkit dedicated to time-series data (2017). https://github.com/rtavenar/tslearn

  20. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Experimental comparison of representation methods and distance measures for time series data. DMKD 26(2), 275–309 (2013)

    MathSciNet  Google Scholar 

  21. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In: KDD, pp. 947–956. ACM (2009)

    Google Scholar 

  22. Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: VLDB, pp. 385–394. Morgan Kaufmann, Burlington (2000)

    Google Scholar 

  23. Zakaria, J., Mueen, A., Keogh, E.J.: Clustering time series using unsupervised-shapelets. In: ICDM, pp. 785–794. IEEE Computer Society (2012)

    Google Scholar 

Download references

Acknowledgments

The current work has been performed with the support of CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil (Process number 233209/2014–0). The authors are grateful to the TRANSFORM project funded by STIC-AMSUD (18-STIC-09) for the partial financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ricardo Carlini Sperandio , Simon Malinowski , Laurent Amsaleg or Romain Tavenard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sperandio, R.C., Malinowski, S., Amsaleg, L., Tavenard, R. (2018). Time Series Retrieval Using DTW-Preserving Shapelets. In: Marchand-Maillet, S., Silva, Y., Chávez, E. (eds) Similarity Search and Applications. SISAP 2018. Lecture Notes in Computer Science(), vol 11223. Springer, Cham. https://doi.org/10.1007/978-3-030-02224-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02224-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02223-5

  • Online ISBN: 978-3-030-02224-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics