Skip to main content

Towards Early Validation of Firmware-Based Power Management Using Virtual Prototypes: A Constrained Random Approach

  • Chapter
  • First Online:
Languages, Design Methods, and Tools for Electronic System Design

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 530))

Abstract

Efficient power management is very important for modern System-on-Chip to satisfy the conflicting demands on high performance and low power consumption. Nowadays, global power management is mostly implemented in firmware (FW) due to the relative ease of development and its flexibility. Recent advances in system-level power modeling and estimation open up opportunities for early validation of these FW-based power management strategies. In this paper, we propose a novel approach for this purpose using SystemC-based Virtual Prototypes (VPs) and constrained random (CR) techniques. The CR-generated representative system workloads are executed in a power-aware FW/VP co-simulation to validate that available performance and power budgets are satisfied. As a proof-of-concept, we demonstrate our power validation approach on the LEON3-based SoCRocket VP.

This work was supported in part by the German Federal Ministry of Education and Research (BMBF) within the project CONFIRM under contract no. 16ES0565 and by the German Research Foundation (DFG) within the Reinhart Koselleck project DR 287/23-1 and by the University of Bremen’s graduate school SyDe, funded by the German Excellence Initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This step is omitted from Fig. 2.1 for the simplicity of representation.

References

  1. HW-SW, SystemC co-simulation SoC validation platform. Technical Report, TU Braunschweig (2012)

    Google Scholar 

  2. B. Bailey, Power limits of EDA (2016). http://semiengineering.com/power-limits-of-eda

  3. D. Große, R. Drechsler, Quality-Driven SystemC Design. (Springer, Dordrecht, 2010)

    Book  Google Scholar 

  4. K. Grüttner, P.A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Herrera, E. Villar, C. Brandolese, W. Fornaciari, G. Palermo, C. Ykman-Couvreur, D. Quaglia, F. Ferrero, R. Valencia, The COMPLEX reference framework for HW/SW co-design and power management supporting platform-based design-space exploration. Microprocess. Microsyst. 37(8, Part C), 966–980 (2013)

    Article  Google Scholar 

  5. F. Haedicke, H.M. Le, D. Große, R. Drechsler, CRAVE: an advanced constrained random verification environment for SystemC, in ISSoC, 2012, pp. 1–7

    Google Scholar 

  6. M. Hassan, V. Herdt, H.M. Le, M. Chen, D. Große, R. Drechsler, Data flow testing for virtual prototypes, in DATE, 2017, pp. 380–385

    Google Scholar 

  7. M. Hassan, V. Herdt, H.M. Le, D. Große, R. Drechsler, Early SoC security validation by VP-based static information flow analysis, in ICCAD, 2017, pp. 400–407

    Google Scholar 

  8. V. Herdt, H.M. Le, D. Große, R. Drechsler, Compiled symbolic simulation for SystemC, in ICCAD, 2016, pp. 52:1–52:8

    Google Scholar 

  9. V. Herdt, H.M. Le, D. Große, R. Drechsler, On the application of formal fault localization to automated RTL-to-TLM fault correspondence analysis for fast and accurate VP-based error effect simulation – a case study, in FDL (2016), pp. 1–8

    Google Scholar 

  10. V. Herdt, H.M. Le, D. Große, R. Drechsler, ParCoSS: efficient parallelized compiled symbolic simulation, in CAV 2016, pp. 177–183

    Google Scholar 

  11. V. Herdt, H.M. Le, D. Große, R. Drechsler, Verifying SystemC using intermediate verification language and stateful symbolic simulation. TCAD (2018). https://doi.org/10.1109/TCAD.2018.2846638

  12. IEEE Std. 1666: IEEE Standard SystemC Language Reference Manual (2011)

    Google Scholar 

  13. J. Karmann, W. Ecker, The semantic of the power intent format UPF: consistent power modeling from system level to implementation, in PATMOS Workshop, 2013, pp. 45–50

    Google Scholar 

  14. J. Laurent, N. Julien, E. Senn, E. Martin, Functional level power analysis: an efficient approach for modeling the power consumption of complex processors, in DATE, vol. 1, 2004, pp. 666–667

    Google Scholar 

  15. H.M. Le, R. Drechsler, CRAVE 2.0: the next generation constrained random stimuli generator for SystemC, in DVCon, 2014

    Google Scholar 

  16. H.M. Le, V. Herdt, D. Große, R. Drechsler, Towards formal verification of real-world SystemC TLM peripheral models – a case study, in DATE, 2016, pp. 1160–1163

    Google Scholar 

  17. O. Mbarek, A. Pegatoquet, M. Auguin, Using unified power format standard concepts for power-aware design and verification of systems-onchip at transaction level. IET Circuits Dev. Syst. 6(5), 287–296 (2012)

    Article  Google Scholar 

  18. G. Onnebrink, R. Leupers, G. Ascheid, S. Schürmans, Black box ESL power estimation for loosely-timed TLM models. in SAMOS, 2016, pp. 366–371. https://doi.org/10.1109/SAMOS.2016.7818374

  19. S.K. Rethinagiri, O. Palomar, R. Ben Atitallah, S. Niar, O. Unsal, A.C. Kestelman, System-level power estimation tool for embedded processor based platforms, in RAPIDO Workshop, 2014, pp. 5:1–5:8

    Google Scholar 

  20. P. Sayyah, M.T. Lazarescu, S. Bocchio, E. Ebeid, G. Palermo, D. Quaglia, A. Rosti, L. Lavagno, Virtual platform-based design space exploration of power-efficient distributed embedded applications. TECS 14(3), 49:1–49:25 (2015)

    Article  Google Scholar 

  21. S. Schürmans, D. Zhang, D. Auras, R. Leupers, G. Ascheid, X. Chen, L. Wang, Creation of ESL power models for communication architectures using automatic calibration, in DAC, 2013, pp. 1–6. https://doi.org/10.1145/2463209.2488804

  22. T. Schuster, R. Meyer, R. Buchty, L. Fossati, M. Berekovic, Socrocket – a virtual platform for the European Space Agency’s SoC development, in ReCoSoC, 2014, pp. 1–7

    Google Scholar 

  23. B. Wang, Y. Xu, R. Hasholzner, C. Drewes, R. Rosales, S. Graf, J. Falk, M. Glaß, J. Teich, Exploration of power domain partitioning for application-specific SoCs in system-level design, in MBMV Workshop, 2016, pp. 102–113

    Google Scholar 

  24. W. Ye, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, The design and use of simplepower: a cycle-accurate energy estimation tool, in DAC, 2000, pp. 340–345

    Google Scholar 

  25. J. Yuan, C. Pixley, A. Aziz, Constraint-Based Verification. (Springer, New York, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Herdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herdt, V., Le, H.M., Große, D., Drechsler, R. (2019). Towards Early Validation of Firmware-Based Power Management Using Virtual Prototypes: A Constrained Random Approach. In: Große, D., Vinco, S., Patel, H. (eds) Languages, Design Methods, and Tools for Electronic System Design. Lecture Notes in Electrical Engineering, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-030-02215-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02215-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02214-3

  • Online ISBN: 978-3-030-02215-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics