Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 279 Accesses

Abstract

In this chapter, we investigate numerically the transport properties of a 2D complex plasma crystal by examining the propagation of coplanar dust lattice waves. In the limit where the Hamiltonian interactions can be decoupled from the non-Hamiltonian effects, we identify two distinct regimes of wave transport: Anderson-type delocalization and long-distance excitation. We use the spectral approach to evaluate the contribution from the Anderson problem, i.e. to determine whether the initial lattice perturbation delocalized through nearest neighbor (short distance) interaction. The theoretical predictions are then compared against the results from a mulecular dynamics simulation. Any major deviations between the predicted and observed crystal dynamics are contributed to non-Hamiltonian effects. The benefit of our approach is twofold. First, the use of complex plasma system allows for tunability of the initial conditions and investigation of the transport problem at the kinetic level. In addition, the 2D dust crystal exhibit hexagonal symmetry, which makes it an ideal macroscopic analogue for materials, such as graphene. Second, the Hamiltonian part of the transport problem is analyzed using a theoretical approach, which determines delocalization in an infinite disordered system without the use of finite-size scaling or periodic boundary conditions. Thus, the comparison between theoretical and numerical results can be used to evaluate the effect of the actual physical boundaries and system size.

Here we focus on cases, where the wave did not spread far away from the initially perturbed dust particle, yet excitations are observed in remote parts of the lattice. In all simulations examined we established that long-distance excitations involve dust grains located around crystal defects. This makes sense physically since lattice defects consist of particles that are displaced from their position in the unperturbed lattice and are, therefore, in unstable equilibrium. In the decoupled Hamiltonian regime, the observed effects can be contributed to the dust lattice interaction with the plasma environment.

We start with a brief introduction to basic complex plasma physics concepts (Sect. 6.1). The use of the two-dimensional dust lattice as a macroscopic analogue for materials such as graphene is discussed in Sect. 6.2. Next, we provide an overview of transport problems in the classical regime and their application to non-Hamiltonian systems, such as the complex plasma crystals (Sect. 6.3). Section 6.4 presents the results from a series of numerical simulations, where an in-plane dust lattice wave is induced in a disordered 2D dust crystal. In Sect. 6.5 we analyze the dynamics of the crystal using the spectral approach and evaluate the contribution from non-Hamiltonian effects.

This chapter published as: Kostadinova, F. Guyton, A. Cameron, K. Busse, Liaw, C. D., Matthews, L. S., & Hyde, T. W. (2017). Transport properties of disordered 2D complex plasma crystal (recommended for publication in Contrib. To Plasma Phys.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term ‘collective behavior’ implies that the dynamics of the plasma system is influenced not only by local interactions but also by the state of the plasma in remote regions. In other words, collective behavior necessarily implies the presence of long-range interactions.

Bibliography

  1. G. Hebner, M. Riley, D. Johnson, P. Ho, R. Buss, Direct determination of particle-particle interactions in a 2D plasma dust crystal. Phys. Rev. Lett. 87(23), 235001 (2001)

    Article  ADS  Google Scholar 

  2. K. Qiao, T.W. Hyde, Dispersion properties of the out-of-plane transverse wave in a two-dimensional Coulomb crystal. Phys. Rev. E 68(4), 046403 (2003)

    Article  ADS  Google Scholar 

  3. P. Hartmann et al., Crystallization dynamics of a single layer complex plasma. Phys. Rev. Lett. 105, 115004 (2010)

    Article  ADS  Google Scholar 

  4. P. Hartmann, A. Kovács, A. Douglass, J. Reyes, L. Matthews, T. Hyde, Slow plastic creep of 2D dusty plasma solids. Phys. Rev. Lett. 113, 025002 (2014)

    Article  ADS  Google Scholar 

  5. C.K. Goertz, Dusty plasmas in the solar system. Rev. Geophys. 27(2), 271–292 (1989)

    Article  ADS  Google Scholar 

  6. T.G. Northrop, Dusty plasmas. Phys. Scr. 45(5), 475 (1992)

    Article  ADS  Google Scholar 

  7. V.N. Tsytovich, Dust plasma crystals, drops, and clouds. Phys.-Uspekhi 40(1), 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. E.C. Whipple, Potentials of surfaces in space. Rep. Prog. Phys. 44(11), 1197 (1981)

    Article  ADS  Google Scholar 

  9. P.A. Robinson, P. Coakley, Spacecraft charging-progress in the study of dielectrics and plasmas. IEEE Trans. Electr. Insul. 27(5), 944–960 (1992)

    Article  ADS  Google Scholar 

  10. V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov, Dusty plasmas. Phys.-Uspekhi 47(5), 447–492 (2004)

    Article  ADS  Google Scholar 

  11. P.K. Shukla, A.A. Mamun, Introduction to dusty plasma physics (CRC Press, 2001)

    Google Scholar 

  12. V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421(1–2), 1–103 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73(5), 652–655 (1994)

    Article  ADS  Google Scholar 

  14. Y. Hayashi, K. Tachibana, Observation of coulomb-crystal formation from carbon particles grown in a methane plasma. Jpn. J. Appl. Phys. 33(Part 2, 6A), L804–L806 (1994)

    Article  ADS  Google Scholar 

  15. A.V. Filinov, M. Bonitz, Y.E. Lozovik, Wigner crystallization in mesoscopic 2D electron systems. Phys. Rev. Lett. 86(17), 3851–3854 (2001)

    Article  ADS  Google Scholar 

  16. W.M. Itano, J.J. Bollinger, J.N. Tan, B. Jelenković, X.-P. Huang, D.J. Wineland, Bragg diffraction from crystallized ion plasmas. Science 279(5351), 686–689 (1998)

    Article  ADS  Google Scholar 

  17. O. Arp, D. Block, A. Piel, A. Melzer, Dust coulomb balls: three-dimensional plasma crystals. Phys. Rev. Lett. 93(16), 165004 (2004)

    Article  ADS  Google Scholar 

  18. M. Bonitz et al., Structural properties of screened coulomb balls. Phys. Rev. Lett. 96(7), 075001 (2006)

    Article  ADS  Google Scholar 

  19. S. De Palo, F. Rapisarda, G. Senatore, Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88(20), 206401 (2002)

    Article  ADS  Google Scholar 

  20. M. Polini, F. Guinea, M. Lewenstein, H.C. Manoharan, V. Pellegrini, Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nanotechnol. 8(9), 625–633 (2013)

    Article  ADS  Google Scholar 

  21. P. Soltan-Panahi et al., Multi-component quantum gases in spin-dependent hexagonal lattices. Nat. Phys. 7(5), 434–440 (2011)

    Article  Google Scholar 

  22. K.K. Gomes, W. Mar, W. Ko, F. Guinea, H.C. Manoharan, Designer Dirac fermions and topological phases in molecular graphene. Nature 483(7389), 306–310 (2012)

    Article  ADS  Google Scholar 

  23. Y. Plotnik et al., Observation of unconventional edge states in ‘photonic graphene. Nat. Mater. 13(1), 57–62 (2014)

    Article  ADS  Google Scholar 

  24. M. Bellec, U. Kuhl, G. Montambaux, F. Mortessagne, Topological transition of Dirac points in a microwave experiment. Phys. Rev. Lett. 110(3), 033902 (2013)

    Article  ADS  Google Scholar 

  25. S.P. Scheeler et al., Plasmon coupling in self-assembled gold nanoparticle-based honeycomb islands. J. Phys. Chem. C 117(36), 18634–18641 (2013)

    Article  Google Scholar 

  26. J. González, F. Guinea, M.A.H. Vozmediano, Electron-electron interactions in graphene sheets. Phys. Rev. B 63(13), 134421 (2001)

    Article  ADS  Google Scholar 

  27. V.E. Fortov et al., Crystallization of a dusty plasma in the positive column of a glow discharge. J. Exp. Theor. Phys. Lett. 64(2), 92–98 (1996)

    Article  Google Scholar 

  28. R.A. Quinn, J. Goree, Experimental test of two-dimensional melting through disclination unbinding. Phys. Rev. E 64(5), 051404 (2001)

    Article  ADS  Google Scholar 

  29. T.E. Sheridan, Monte Carlo study of melting in a finite two-dimensional dusty plasma. Phys. Plasmas 16(8), 083705 (2009)

    Article  ADS  Google Scholar 

  30. V. Nosenko, S.K. Zhdanov, Dynamics of dislocations in a 2D plasma crystal. Contrib. Plasma Physics 49(4–5), 191–198 (2009)

    Article  ADS  Google Scholar 

  31. V. Nosenko, S. Zhdanov, G. Morfill, Supersonic dislocations observed in a plasma crystal. Phys. Rev. Lett. 99(2), 025002 (2007)

    Article  ADS  Google Scholar 

  32. S. Zhdanov et al., Dissipative dark solitons in a dc complex plasma. EPL Europhys. Lett. 89(2), 25001 (2010)

    Article  ADS  Google Scholar 

  33. D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Localization of light in a disordered medium. Nature 390(6661), 671–673 (1997)

    Article  ADS  Google Scholar 

  34. R. Dalichaouch, J.P. Armstrong, S. Schultz, P.M. Platzman, S.L. McCall, Microwave localization by two-dimensional random scattering. Nature 354(6348), 53–55 (1991)

    Article  ADS  Google Scholar 

  35. A.A. Chabanov, M. Stoytchev, A.Z. Genack, Statistical signatures of photon localization. Nature 404(6780), 850–853 (2000)

    Article  ADS  Google Scholar 

  36. A.A. Chabanov, A.Z. Genack, Photon localization in resonant media. Phys. Rev. Lett. 87(15), 153901 (2001)

    Article  ADS  Google Scholar 

  37. M. Störzer, P. Gross, C.M. Aegerter, G. Maret, Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96(6), 063904 (2006)

    Article  ADS  Google Scholar 

  38. T. Schwartz, G. Bartal, S. Fishman, M. Segev, Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446(7131), 52–55 (2007)

    Article  ADS  Google Scholar 

  39. F. Riboli et al., Anderson localization of near-visible light in two dimensions. Opt. Lett. 36(2), 127 (2011)

    Article  ADS  Google Scholar 

  40. J. Armijo, R. Allio, Observation of coherent back-scattering and its dynamics in a transverse 2D photonic disorder: from weak to strong localization. Cond. Mat. Physicsphys. (2015)

    Google Scholar 

  41. O. Richoux, V. Tournat, T. Le Van Suu, Acoustic wave dispersion in a one-dimensional lattice of nonlinear resonant scatterers. Phys. Rev. E 75(2), 026615 (2007)

    Article  ADS  Google Scholar 

  42. O. Richoux, E. Morand, L. Simon, Analytical study of the propagation of acoustic waves in a 1D weakly disordered lattice. Class. Phys. 324, 1983–1995 (2009)

    ADS  MATH  Google Scholar 

  43. H. Hu, A. Strybulevych, J.H. Page, S.E. Skipetrov, B.A. van Tiggelen, Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4(12), 945–948 (2008)

    Article  Google Scholar 

  44. S. Faez, A. Strybulevych, J.H. Page, A. Lagendijk, B.A. van Tiggelen, Observation of multifractality in Anderson localization of ultrasound. Phys. Rev. Lett. 103(15), 155703 (2009)

    Article  ADS  Google Scholar 

  45. A.C. Hladky-Hennion, J.O. Vasseur, S. Degraeve, C. Granger, M. de Billy, Acoustic wave localization in one-dimensional Fibonacci phononic structures with mirror symmetry. J. Appl. Phys. 113(15), 154901 (2013)

    Article  ADS  Google Scholar 

  46. N. Mott, Metal-insulator transitions. Phys. Today 31(11), 42–45 (1978)

    Article  Google Scholar 

  47. R. Kosloff, Quantum thermodynamics: a dynamical viewpoint. Entropy 15(6), 2100–2128 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  48. L.S. Matthews, T.W. Hyde, Effect of dipole–dipole charge interactions on dust coagulation. New J. Phys. 11(6), 063030 (2009)

    Article  ADS  Google Scholar 

  49. L.S. Matthews, T.W. Hyde, Effects of the charge-dipole interaction on the coagulation of fractal aggregates. IEEE Trans. Plasma Sci. 32(2), 586–593 (2004)

    Article  ADS  Google Scholar 

  50. L.S. Matthews, T.W. Hyde, Charged grains in Saturn’s F-Ring: interaction with Saturn’s magnetic field. Adv. Space Res. 33(12), 2292–2297 (2004)

    Article  ADS  Google Scholar 

  51. L.S. Matthews, T.W. Hyde, Charging and growth of fractal dust grains. IEEE Trans. Plasma Sci. 36(1), 310–314 (2008)

    Article  ADS  Google Scholar 

  52. L.S. Matthews, T.W. Hyde, Gravitoelectrodynamics in Saturn’s F ring: encounters with Prometheus and Pandora. J. Phys. Math. Gen. 36(22), 6207 (2003)

    Article  ADS  Google Scholar 

  53. M. Sun, L.S. Matthews, T.W. Hyde, Effect of multi-sized dust distribution on local plasma sheath potentials. Adv. Space Res. 38(11), 2575–2580 (2006)

    Article  ADS  Google Scholar 

  54. L.S. Matthews, K. Qiao, T.W. Hyde, Dynamics of a dust crystal with two different size dust species. Adv. Space Res. 38(11), 2564–2570 (2006)

    Article  ADS  Google Scholar 

  55. K. Qiao, J. Kong, Z. Zhang, L.S. Matthews, T.W. Hyde, Mode couplings and conversions for horizontal dust particle pairs in complex plasmas. IEEE Trans. Plasma Sci. 41(4), 745–753 (2013)

    Article  ADS  Google Scholar 

  56. S. Nunomura, J. Goree, S. Hu, X. Wang, A. Bhattacharjee, Dispersion relations of longitudinal and transverse waves in two-dimensional screened Coulomb crystals. Phys. Rev. E 65(6), 066402 (2002)

    Article  ADS  Google Scholar 

  57. D.J. Thouless, Electrons in disordered systems and the theory of localization. Phys. Rep. 13(3), 93–142 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostadinova, E.G. (2018). Transport in 2D Complex Plasma Crystals. In: Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02212-9_6

Download citation

Publish with us

Policies and ethics