Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 275 Accesses

Abstract

In condensed matter physics, a crystal without impurities is often described by the one-electron model (Fig. 1.1), where the transport properties of the material are studied using the energy spectrum of a single electron moving under the influence of a periodic array of atoms [1]. Neglecting interaction between electrons, the one-electron Hamiltonian is given by

$$ {H}_0\equiv K+{V}_0, $$
(1.1)

where K is the kinetic energy of the particle and V0 is the periodic potential function of the lattice. Throughout this work, we take K ≡  − Δ, where Δ is the discrete Laplacian on the Hilbert space ℋ. A crucial assumption of the one-electron model is that the medium is infinite in space, which allows for the use of statistical mechanics without considerations of finite size and boundary effects. However, a common practice is to approximate the infinite system by a finite one, where one examines the dependence of relevant properties on system size. Such methods are incomplete without a proper scaling approach, which extends the finite volume back to infinity and recovers the properties of the extended system. A primary goal of this book is to point out possible issues related to scaling and propose an alternative approach to transport problems, which does not require finite-size approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The discrete Laplacian is the analogue of the continuous Laplacian on a graph or a discrete grid. Here, it represents the energy transfer term (nearest neighbor interaction) of the Hamiltonian.

  2. 2.

    The zero-temperature approximation is an important limitation of the Anderson model as it neglects the contact of the system with any external thermal bath. Since thermal fluctuations often play important role in real experiments, they should be accounted for in a comprehensive theory of transport.

  3. 3.

    The same analysis can easily be generalized to any dimension and lattice geometry.

  4. 4.

    Note that in probability theory an event happens almost surely if it happens with probability 1. In this book, we use the two phrases interchangeably.

  5. 5.

    See Appendix B for a definition of measure.

  6. 6.

    Note that in this description the unperturbed crystal is an isolator and the impurities act to facilitate transport. Alternatively, one can consider a conducting regular lattice with impurities acting as (almost) perfect barriers that impede transport. In this work, we focus on the second formulation of the problem.

Bibliography

  1. L.H. Hoddeson, G. Baym, The development of the quantum mechanical electron theory of metals: 1900-28. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 371(1744), 8–23 (1980)

    Article  ADS  Google Scholar 

  2. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    Article  ADS  Google Scholar 

  3. D.J. Thouless, Electrons in disordered systems and the theory of localization. Phys. Rep. 13(3), 93–142 (1974)

    Article  ADS  Google Scholar 

  4. V. Jakšić, Y. Last, Spectral structure of Anderson type Hamiltonians. Invent. Math. 141(3), 561–577 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. C. Liaw, Approach to the extended states conjecture. J. Stat. Phys. 153(6), 1022–1038 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. E. Abrahams, P. Anderson, D. Licciardello, T. Ramakrishnan, Scaling theory of localization. Phys. Rev. Lett. 42(10) (1979)

    Google Scholar 

  7. F. Yonezawa, T. Ninomiya, Introduction, in Topological Disorder in Condensed Matter, (Springer, Berlin, Heidelberg, 1983), pp. 1–11

    Chapter  Google Scholar 

  8. N.F. Mott, Conduction in non-crystalline systems IX. The minimum metallic conductivity. Philos. Mag. 26(4), 1015–1026 (1972)

    Article  ADS  Google Scholar 

  9. T. Brandes, S. Kettenmann, The Anderson Transition and Its Ramifications—Localization, Quantum Interference, and Interactions (Springer, 2003)

    Google Scholar 

  10. J. Chabé, G. Lemarié, B. Grémaud, D. Delande, P. Szriftgiser, J.C. Garreau, Experimental observation of the Anderson metal-insulator transition with atomic matter waves. Phys. Rev. Lett. 101(25), 255702 (2008)

    Article  ADS  Google Scholar 

  11. B. Kramer, A. MacKinnon, Localization: theory and experiment. Rep. Prog. Phys. 56(12), 1469–1564 (1993)

    Article  ADS  Google Scholar 

  12. A. Lagendijk, B. van Tiggelen, D.S. Wiersma, Fifty years of Anderson localization. Phys. Today 62(8), 24–29 (2009)

    Article  Google Scholar 

  13. M. Aizenman, S. Molchanov, Localization at large disorder and at extreme energies: an elementary derivations. Commun. Math. Phys. 157(2), 245–278 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Hartmann et al., Crystallization dynamics of a single layer complex plasma. Phys. Rev. Lett. 105, 115004 (2010)

    Article  ADS  Google Scholar 

  15. L.A. Pastur, Spectral properties of disordered systems in the one-body approximation. Commun. Math. Phys. 75(2), 179–196 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Fröhlich, T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  17. V. Jakšić, Y. Last, Simplicity of singular spectrum in Anderson-type Hamiltonians. Duke Math. J. 133(1), 185–204 (2006)

    Article  MathSciNet  Google Scholar 

  18. A. Furusaki, N. Nagaosa, Single-barrier problem and Anderson localization in a one-dimensional interacting electron system. Phys. Rev. B 47(8), 4631–4643 (1993)

    Article  ADS  Google Scholar 

  19. F.A.B.F. de Moura, M.L. Lyra, Delocalization in the 1D Anderson model with long-range correlated disorder. Phys. Rev. Lett. 81(17), 3735–3738 (1998)

    Article  ADS  Google Scholar 

  20. J. Bertolotti, S. Gottardo, D.S. Wiersma, M. Ghulinyan, L. Pavesi, Optical necklace states in Anderson localized 1D systems. Phys. Rev. Lett. 94(11), 113903 (2005)

    Article  ADS  Google Scholar 

  21. G. Semeghini et al., Measurement of the mobility edge for 3D Anderson localization. Nat. Phys. 11(7), 554–559 (2015)

    Article  Google Scholar 

  22. A.W. Stadler, A. Kusy, R. Sikora, Numerical studies of the Anderson transition in three-dimensional quantum site percolation. J. Phys. Condens. Matter 8(17), 2981 (1996)

    Article  ADS  Google Scholar 

  23. C. Conti, A. Fratalocchi, Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals. Nat. Phys. 4(10), 794–798 (2008)

    Article  Google Scholar 

  24. S.E. Skipetrov, A. Minguzzi, B.A. van Tiggelen, B. Shapiro, Anderson localization of a Bose-Einstein condensate in a 3D random potential. Phys. Rev. Lett. 100(16), 165301 (2008)

    Article  ADS  Google Scholar 

  25. S.S. Kondov, W.R. McGehee, J.J. Zirbel, B. DeMarco, Three-dimensional Anderson localization of ultracold matter. Science 334(6052), 66–68 (2011)

    Article  ADS  Google Scholar 

  26. S.E. Skipetrov, B.A. van Tiggelen, Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett. 96(4), 043902 (2006)

    Article  ADS  Google Scholar 

  27. A.M.M. Pruisken, Universal singularities in the integral quantum hall effect. Phys. Rev. Lett. 61(11), 1297–1300 (1988)

    Article  ADS  Google Scholar 

  28. S. Fishman, D.R. Grempel, R.E. Prange, Chaos, quantum recurrences, and Anderson localization. Phys. Rev. Lett. 49(8), 509–512 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  29. K. Whitham, J. Yang, B.H. Savitzky, L.F. Kourkoutis, F. Wise, T. Hanrath, Charge transport and localization in atomically coherent quantum dot solids. Nat. Mater. 15(5), 557–563 (2016)

    Article  ADS  Google Scholar 

  30. S. Faez, A. Strybulevych, J.H. Page, A. Lagendijk, B.A. van Tiggelen, Observation of multifractality in Anderson localization of ultrasound. Phys. Rev. Lett. 103(15), 155703 (2009)

    Article  ADS  Google Scholar 

  31. H. Hu, A. Strybulevych, J.H. Page, S.E. Skipetrov, B.A. van Tiggelen, Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4(12), 945–948 (2008)

    Article  Google Scholar 

  32. O. Richoux, V. Tournat, T. Le Van Suu, Acoustic wave dispersion in a one-dimensional lattice of nonlinear resonant scatterers. Phys. Rev. E 75(2), 026615 (2007)

    Article  ADS  Google Scholar 

  33. M. Störzer, P. Gross, C.M. Aegerter, G. Maret, Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96(6), 063904 (2006)

    Article  ADS  Google Scholar 

  34. A.A. Chabanov, A.Z. Genack, Photon localization in resonant media. Phys. Rev. Lett. 87(15), 153901 (2001)

    Article  ADS  Google Scholar 

  35. D.S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini, Localization of light in a disordered medium. Nature 390(6661), 671–673 (1997)

    Article  ADS  Google Scholar 

  36. A.C. Hladky-Hennion, J.O. Vasseur, S. Degraeve, C. Granger, M. de Billy, Acoustic wave localization in one-dimensional Fibonacci phononic structures with mirror symmetry. J. Appl. Phys. 113(15), 154901 (2013)

    Article  ADS  Google Scholar 

  37. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  38. K.S. Novoselov et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10451–10453 (2005)

    Article  ADS  Google Scholar 

  39. A. Cresti et al., Charge transport in disordered graphene-based low dimensional materials. Nano Res. 1(5), 361–394 (2008)

    Article  Google Scholar 

  40. A. Lherbier, B. Biel, Y.-M. Niquet, S. Roche, Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects. Phys. Rev. Lett. 100(3), 036803 (2008)

    Article  ADS  Google Scholar 

  41. N. Leconte, A. Lherbier, F. Varchon, P. Ordejon, S. Roche, J.-C. Charlier, Quantum transport in chemically modified two-dimensional graphene: from minimal conductivity to Anderson localization. Phys. Rev. B 84(23), 235420 (2011)

    Article  ADS  Google Scholar 

  42. A. Lherbier, S.M.-M. Dubois, X. Declerck, S. Roche, Y.-M. Niquet, J.-C. Charlier, Two-dimensional graphene with structural defects: elastic mean free path, minimum conductivity, and Anderson transition. Phys. Rev. Lett. 106(4), 046803 (2011)

    Article  ADS  Google Scholar 

  43. H. Suzuura, T. Ando, Weak-localization in metallic carbon nanotubes. J. Phys. Soc. Jpn. 75(2), 024703 (2006)

    Article  ADS  Google Scholar 

  44. S.-J. Xiong, Y. Xiong, Anderson localization of electron states in graphene in different types of disorder. Phys. Rev. B 76(21), 214204 (2007)

    Article  ADS  Google Scholar 

  45. A. Bostwick et al., Quasiparticle transformation during a metal-insulator transition in graphene. Phys. Rev. Lett. 103(5), 056404 (2009)

    Article  ADS  Google Scholar 

  46. I. Amanatidis, S.N. Evangelou, Quantum chaos in weakly disordered graphene. Phys. Rev. B 79(20), 205420 (2009)

    Article  ADS  Google Scholar 

  47. J.E. Barrios-Vargas, G.G. Naumis, Critical wavefunctions in disordered graphene. J. Phys. Condens. Matter 24(25), 255305 (2012)

    Article  ADS  Google Scholar 

  48. E. Amanatidis, I. Kleftogiannis, D.E. Katsanos, S.N. Evangelou, Critical level statistics for weakly disordered graphene. J. Phys. Condens. Matter 26(15), 155601 (2014)

    Article  Google Scholar 

  49. K. Nomura, M. Koshino, S. Ryu, Topological delocalization of two-dimensional massless Dirac fermions. Phys. Rev. Lett. 99(14), 146806 (2007)

    Article  ADS  Google Scholar 

  50. J.H. Bardarson, J. Tworzydło, P.W. Brouwer, C.W.J. Beenakker, One-parameter scaling at the Dirac point in graphene. Phys. Rev. Lett. 99(10), 106801 (2007)

    Article  ADS  Google Scholar 

  51. H. Fritzsche, Electronic properties of amorphous semiconductors, in Amorphous and Liquid Semiconductors, (Springer, Boston, 1974), pp. 221–312

    Chapter  Google Scholar 

  52. G. Feher, Observation of nuclear magnetic resonances via the electron spin resonance line. Phys. Rev. 103(3), 834–835 (1956)

    Article  ADS  Google Scholar 

  53. A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, 2004)

    Google Scholar 

  54. Strongly Correlated Systems—Theoretical Methods | Adolfo Avella | Springer. [Online]. http://www.springer.com/us/book/9783642218309. Accessed 7 Aug 2016

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostadinova, E.G. (2018). Introduction. In: Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02212-9_1

Download citation

Publish with us

Policies and ethics