Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 261 Accesses

Abstract

Multi-body decays of unstable particles proceed, where permitted, via various short-lived intermediate resonant states. To probe the interactions that govern these decays, an understanding of the quantum-mechanical amplitude that describes these process is required. The distributions of the angular components of this amplitude are well known and constrained by angular momentum conservation, which permits the separation of various interfering resonant components of differing spin. Interfering components of the same spin result in complicated distributions in the invariant-mass projections that are not as well understood, and are further complicated by the numerous decay channels opening with increasing invariant-mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For \({{{{B}} ^+}} \!\rightarrow {{\pi } ^+} {{\pi } ^+} {{\pi } ^-} \), the symmetrisation of the amplitude by a folding of the Dalitz-plot results in this only being true at low mass for projection on the low-mass combination of oppositely charged pions (and high mass for the projection on the high-mass combination), as the full helicity range is not integrated over.

  2. 2.

    This is not the case for the \(\rho (770)^{\circ }\) in particular, where a specific calculation has been performed to improve agreement with experimental data, described in Sect. 6.5.2. It is also possible to use dispersion theory techniques to estimate the mass dependence [7].

  3. 3.

    This parameterisation disregards information about additional open channels, and as such its validity, particularly for precision mass measurements or for modelling the higher mass \(\rho (1450)\) and \(\rho (1700)\) resonances, is questioned by some authors [7].

  4. 4.

    This can also be done for neutral meson decays via specific intermediate resonances whose decays are quasi-flavour-specific, such as in the amplitude analysis of the \({{{B}} ^0} \!\rightarrow {{K} ^0_\mathrm{\scriptscriptstyle S}} {{\pi } ^+} {{\pi } ^-} \) decay, where \(C\!P\)-violation was observed in the \({{{B}} ^0} \!\rightarrow {{K} ^{*+}} (892)({{K} ^0_\mathrm{\scriptscriptstyle S}} {{\pi } ^+}){{\pi } ^-} \) decay [23].

References

  1. R.H. Dalitz, S.F. Tuan, The phenomenological description of K-nucleon reaction processes. Ann. Phys. 10, 307 (1960). https://doi.org/10.1016/0003-4916(60)90001-4

    Article  ADS  MATH  Google Scholar 

  2. J. Blatt, V.E. Weisskopf, Theoretical nuclear physics (Wiley, New York, 1952)

    MATH  Google Scholar 

  3. F. von Hippel, C. Quigg, Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes. Phys. Rev. D 5, 624 (1972). https://doi.org/10.1103/PhysRevD.5.624

    Article  ADS  Google Scholar 

  4. Particle Data Group, C. Patrignani et al., Review of particle physics. Chin. Phys. C40, 100001 (2016) (2017 update). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  Google Scholar 

  5. C. Zemach, Three pion decays of unstable particles. Phys. Rev. 133, B1201 (1964). https://doi.org/10.1103/PhysRev.133.B1201

    Article  ADS  Google Scholar 

  6. C. Zemach, Use of angular-momentum tensors. Phys. Rev. 140, B97 (1965). https://doi.org/10.1103/PhysRev.140.B97

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Lichard, M. Vojik, An alternative parametrization of the pion form-factor and the mass and width of RHO(770), arXiv:hep-ph/0611163

  8. G.J. Gounaris, J.J. Sakurai, Finite-width corrections to the vector-meson-dominance prediction for \(\rho \rightarrow {e}^{+}{e}^{-}\). Phys. Rev. Lett. 21, 244 (1968). https://doi.org/10.1103/PhysRevLett.21.244

    Article  ADS  Google Scholar 

  9. W.M. Dunwoodie, Omega-RHO mixing parametrization, http://www.slac.stanford.edu/~wmd/omega-rho_mixing/omega-rho_mixing.note

  10. P.E. Rensing, Single electron detection for SLD crid and multi-pion spectroscopy in K\(^{-}p\) interactions at 11 GeV/c. Ph.D. thesis, Stanford University, Stanford, CA, 1993 (Presented on 1993)

    Google Scholar 

  11. CMD-2 Collaboration, R.R. Akhmetshin et al., Measurement of \(e^+e^- \rightarrow \pi ^+\pi ^-\) cross-section with CMD-2 around \(\rho \) meson. Phys. Lett. B527, 161 (2002). https://doi.org/10.1016/S0370-2693(02)01168-1, arXiv:hep-ex/0112031

    Article  ADS  Google Scholar 

  12. S. Coleman, S.L. Glashow, Departures from the eightfold way: theory of strong interaction symmetry breakdown. Phys. Rev. 134, B671 (1964). https://doi.org/10.1103/PhysRev.134.B671

    Article  ADS  Google Scholar 

  13. D. Aston et al., A study of \(K^-\pi ^+\) scattering in the reaction \(K^-p \rightarrow K^-\pi ^+ n\) at \(11\) GeV/c. Nucl. Phys. B 296, 493 (1988). https://doi.org/10.1016/0550-3213(88)90028-4

    Article  ADS  Google Scholar 

  14. S.M. Flatté, Coupled-channel analysis of the \(\pi \eta \) and KK systems near KK threshold. Phys. Lett. B 63, 224 (1976)

    Article  ADS  Google Scholar 

  15. V.V. Anisovich, A.V. Sarantsev, K matrix analysis of the (\(IJ^{PC} = 00^{++}\)) -wave in the mass region below 1900 MeV. Eur. Phys. J. A 16, 229 (2003). https://doi.org/10.1140/epja/i2002-10068-x. arXiv:hep-ph/0204328

    Article  ADS  Google Scholar 

  16. I.J.R. Aitchison, K-matrix formalism for overlapping resonances. Nucl. Phys. A 189, 417 (1972). https://doi.org/10.1016/0375-9474(72)90305-3

    Article  ADS  Google Scholar 

  17. S.L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial-vector current. II. Phys. Rev. 139, B1638 (1965). https://doi.org/10.1103/PhysRev.139.B1638

    Article  ADS  Google Scholar 

  18. Focus Collaboration, J.M. Link et al., Dalitz plot analysis of \(D_{s}^+\) and \(D^+\) decay to \(\pi ^+ \pi ^- \pi ^+\) using the K matrix formalism. Phys. Lett. B585, 200 (2004). https://doi.org/10.1016/j.physletb.2004.01.065, arXiv:hep-ex/0312040

    Article  ADS  Google Scholar 

  19. BaBar Collaboration, B. Aubert et al., Improved measurement of the CKM angle \(\gamma \) in \(B^\mp \rightarrow D^{(*)} K^{(*\mp )}\) decays with a Dalitz plot analysis of \(D\) decays to \(K^0_{S} \pi ^{+} \pi ^{-}\) and \(K^0_{S} K^{+} K^{-}\). Phys. Rev. D78, 034023 (2008). https://doi.org/10.1103/PhysRevD.78.034023, arXiv:0804.2089

  20. T. Latham, The Laura++ Dalitz plot fitter, in AIP Conference Proceedings, vol. 1735 (2016) p. 070001. https://doi.org/10.1063/1.4949449, arXiv:1603.00752

  21. F. James, M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343 (1975). https://doi.org/10.1016/0010-4655(75)90039-9

    Article  ADS  Google Scholar 

  22. B. Efron, Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1 (1979). https://doi.org/10.1214/aos/1176344552

    Article  MathSciNet  MATH  Google Scholar 

  23. LHCb, R. Aaij et al., Amplitude analysis of the \(B^0 \rightarrow K^0_s \pi ^+\pi ^-\) decay (In preparation)

    Google Scholar 

  24. LHCb, R. Aaij et al., Measurement of the \(B^{\pm }\) production asymmetry and the \(CP\) asymmetry in \(B^{\pm } \rightarrow J/\psi K^{\pm }\) decays, arXiv:1701.05501

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel O’Hanlon .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Hanlon, D. (2018). Amplitude Analysis. In: Studies of CP-Violation in Charmless Three-Body b-Hadron Decays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02206-8_6

Download citation

Publish with us

Policies and ethics