Skip to main content

The LHCb Detector

  • Chapter
  • First Online:
  • 244 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The LHCb detector, located at Point 8 on the Large Hadron Collider, is a forward-arm spectrometer designed primarily for the investigation of b- and c-hadron decays, which, when produced in the \(pp \rightarrow b\bar{b}X(c\bar{c}X)\) process, are predominantly distributed in the high pseudorapidity forward region. High-precision tracking close to the interaction point results in exceptional identification of b- and c-hadron decay vertices, and a ring-imaging Cherenkov detector allows excellent separation of different types of charged particles, enabling measurements of suppressed fully-hadronic final states. Nevertheless, the general purpose configuration of the sub-detectors and trigger system allows for a wide variety of physics measurements to be performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The ‘Detector with Lepton, Photon, and Hadron Identification’ (DELPHI) experiment on the Large Electron Positron collider previously inhabited the cavern at Point 8.

  2. 2.

    The aerogel has been removed for Run 2 operations as it did not improve low-momentum performance as much as predicted. Its removal results in fewer uninformative Cherenkov photons, speeding up reconstruction, and a larger \(\mathrm{C}_4 \mathrm{F}_{10}\) volume.

  3. 3.

    A \(5\%\) by volume addition of \(\mathrm {CO}_2\) to quench scintillation was introduced during Run 1 operations [15].

  4. 4.

    There are also candidates that are ‘trigger on both’, where neither the presence of the candidate decay nor the rest of the event is sufficient individually to fire a trigger. Such candidates are rejected however, as the trigger efficiency is not measurable.

  5. 5.

    Fill 5045 in June 2016 was the longest on record so far at over 37 h.

References

  1. LHCb collaboration, A.A. Alves Jr. et al., The LHCb detector at the LHC. JINST 3, S08005 (2008). https://doi.org/10.1088/1748-0221/3/08/S08005

    ADS  Google Scholar 

  2. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). https://doi.org/10.1016/j.cpc.2008.01.036, arXiv.org/abs/0710.3820

    Article  ADS  MATH  Google Scholar 

  3. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). https://doi.org/10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  4. LHCb collaboration, R. Aaij et al., LHCb detector performance. Int. J. Mod. Phys. A 30, 1530022 (2015). https://doi.org/10.1142/S0217751X15300227, arXiv:1412.6352

  5. LHCb collaboration, R. Aaij et al., Measurement of forward \(W\) and \(Z\) boson production in \(pp\) collisions at \(\sqrt{s}=8\) TeV. JHEP 01, 155 (2016). https://doi.org/10.1007/JHEP01(2016)155, arXiv:1511.08039

  6. LHCb collaboration, R. Aaij et al., Measurement of the forward-backward asymmetry in \(Z/\gamma ^\ast \rightarrow \mu ^{+}\mu ^{-}\) decays and determination of the effective weak mixing angle. JHEP 11, 190 (2015). https://doi.org/10.1007/JHEP11(2015)190, arXiv:1509.07645

  7. LHCb collaboration, R. Aaij et al., Search for long-lived heavy charged particles using a ring-imaging Cherenkov technique at LHCb. Eur. Phys. J. C75, 595 (2015). https://doi.org/10.1140/epjc/s10052-015-3809-7, arXiv:1506.09173

  8. LHCb collaboration, R. Aaij et al., Measurement of two-particle correlations in proton-ion collisions at \(\sqrt{s_{NN}} = 5\) TeV. Phys. Lett. B762, 473 (2016). https://doi.org/10.1016/j.physletb.2016.09.064, arXiv:1512.00439

    Article  ADS  Google Scholar 

  9. LHCb collaboration, R. Aaij et al., Precision luminosity measurements at LHCb. JINST 9, P12005 (2014). https://doi.org/10.1088/1748-0221/9/12/P12005, arXiv:1410.0149

    Article  Google Scholar 

  10. LHCb collaboration, Measurement of \(j/\psi \) and \(D^{0}\) production in \(p\)Ar collisions at \(\sqrt{s_{NN}} = 110\) GeV. LHCb-CONF-2017-001, http://cdsweb.cern.ch/search?p=LHCb-CONF-2017-001&f=reportnumber&action_search=Search&c=LHCb+Conference+Contributions

  11. R. Aaij et al., Performance of the LHCb vertex locator. JINST 9, P09007 (2014). https://doi.org/10.1088/1748-0221/9/09/P09007. arXiv:1405.7808

    Article  Google Scholar 

  12. M. Vesterinen, Considerations on the LHCb dipole magnet polarity reversal. LHCb-PUB-2014-006. On behalf of the LHCb collaboration, http://cdsweb.cern.ch/search?p=LHCb-PUB-2014-006&f=reportnumber&action_search=Search&c=LHCb+Reports

  13. B.J. Holzer, R. Versteegen, R. Alemany, Vertical crossing angle in IR8. CERN-ATS-Note-2013-024 PERF, http://cdsweb.cern.ch/search?p=CERN-ATS-Note-2013-024PERF&f=reportnumber&action_search=Search&c=LHCb+Reports

  14. R. Arink et al., Performance of the LHCb outer tracker. JINST 9, P01002 (2014). https://doi.org/10.1088/1748-0221/9/01/P01002. arXiv:1311.3893

    Article  Google Scholar 

  15. T. Blake, Quenching the scintillation in CF\(_4\) cherenkov gas radiator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 791, 27 (2015). https://doi.org/10.1016/j.nima.2015.04.020

    Article  ADS  Google Scholar 

  16. M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC. Eur. Phys. J. C 73, 2431 (2013). https://doi.org/10.1140/epjc/s10052-013-2431-9. arXiv:1211.6759

    Article  ADS  Google Scholar 

  17. R.W. Forty, O. Schneider, RICH pattern recognition. LHCb-98-040, http://cdsweb.cern.ch/search?p=LHCb-98-040&f=reportnumber&action_search=Search&c=LHCb+Reports

  18. R. Aaij et al., Performance of the LHCb calorimeters. LHCb-DP-2013-004, in preparation

    Google Scholar 

  19. F. Archilli et al., Performance of the muon identification at LHCb. JINST 8, P10020 (2013). https://doi.org/10.1088/1748-0221/8/10/P10020. arXiv:1306.0249

    Article  Google Scholar 

  20. R. Aaij et al., The LHCb trigger and its performance in 2011. JINST 8, P04022 (2013). https://doi.org/10.1088/1748-0221/8/04/P04022. arXiv:1211.3055

    Article  Google Scholar 

  21. V.V. Gligorov, M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree. JINST 8, P02013 (2013). https://doi.org/10.1088/1748-0221/8/02/P02013. arXiv:1210.6861

    Article  ADS  Google Scholar 

  22. A. Puig, The LHCb trigger in 2011 and 2012, http://cdsweb.cern.ch/search?p=LHCb-PUB-2014-046&f=reportnumber&action_search=Search&c=LHCb+Reports

  23. S. Tolk, J. Albrecht, F. Dettori, A. Pellegrino, Data driven trigger efficiency determination at LHCb. LHCb-PUB-2014-039. CERN-LHCb-PUB-2014-039, http://cdsweb.cern.ch/search?p=LHCb-PUB-2014-039.CERN-LHCb-PUB-2014-039&f=reportnumber&action_search=Search&c=LHCb+Reports

  24. M. Clemencic, The LHCb simulation application, Gauss: design, evolution and experience. J. Phys. Conf. Ser. 331, 032023 (2011). https://doi.org/10.1088/1742-6596/331/3/032023

    Article  Google Scholar 

  25. G. Corti et al., How the Monte Carlo production of a wide variety of different samples is centrally handled in the LHCb experiment. J. Phys. Conf. Ser. 664, 072014 (2015). https://doi.org/10.1088/1742-6596/664/7/072014

    Article  Google Scholar 

  26. D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A462, 152 (2001). https://doi.org/10.1016/S0168-9002(01)00089-4

    Article  ADS  Google Scholar 

  27. Particle Data Group, C. Patrignani et al., Review of particle physics. Chin. Phys. C40, 100001 (2016) (2017 update). https://doi.org/10.1088/1674-1137/40/10/100001, http://pdg.lbl.gov/

    Article  Google Scholar 

  28. Geant4 collaboration, S. Agostinelli et al., Geant4: a simulation toolkit, Nucl. Instrum. Meth. A506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  29. Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53, 270 (2006). https://doi.org/10.1109/TNS.2006.869826

    Article  ADS  Google Scholar 

  30. A. Tsaregorodtsev, DIRAC3: the new generation of the LHCb grid software. J. Phys. Conf. Ser. 219, 062029 (2010). https://doi.org/10.1088/1742-6596/219/6/062029

    Article  Google Scholar 

  31. L. Anderlini et al., The PIDCalib package, LHCb-PUB-2016-021, http://cdsweb.cern.ch/search?p=LHCb-PUB-2016-021&f=reportnumber&action_search=Search&c=LHCb+Reports

  32. O. Lupton, L. Anderlini, B. Sciascia, V. Gligorov, Calibration samples for particle identification at LHCb in Run 2. LHCb-PUB-2016-005. CERN-LHCb-PUB-2016-005, http://cdsweb.cern.ch/search?p=LHCb-PUB-2016-005.CERN-LHCb-PUB-2016-005&f=reportnumber&action_search=Search&c=LHCb+Reports

  33. M. Pivk, F.R. Le Diberder, SPlot: a statistical tool to unfold data distributions. Nucl. Instrum. Meth. A555, 356 (2005). https://doi.org/10.1016/j.nima.2005.08.106, arXiv:physics/0402083

    Article  ADS  Google Scholar 

  34. W.D. Hulsbergen, Decay chain fitting with a Kalman filter. Nucl. Instrum. Meth. A552, 566 (2005). https://doi.org/10.1016/j.nima.2005.06.078, arXiv:physics/0503191

    Article  ADS  Google Scholar 

  35. G. Dujany, B. Storaci, Real-time alignment and calibration of the LHCb detector in Run II, http://cdsweb.cern.ch/search?p=LHCb-PROC-2015-011&f=reportnumber&action_search=Search&c=LHCb+Conference+ProceedingsLHCb-PROC-2015-011

  36. R. Aaij et al., Tesla: an application for real-time data analysis in high energy physics, arXiv:1604.05596

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel O’Hanlon .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Hanlon, D. (2018). The LHCb Detector. In: Studies of CP-Violation in Charmless Three-Body b-Hadron Decays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02206-8_4

Download citation

Publish with us

Policies and ethics