Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 231 Accesses

Abstract

The predictions of the Standard Model of fundamental interactions yield remarkable agreement with experimental measurements, with some consistent to one part in \(10^9\) (Hanneke, Hoogerheide and Gabrielse, Phys. Rev. A83, 052122 (2011) [1]), and as such the Standard Model currently represents humanity’s best understanding of the behaviour of all known elementary particles. Nevertheless, there is mounting evidence for physical observations inconsistent with the predictions of the Standard Model: astrophysical observations of dark matter, dark energy, and the baryon asymmetry of the universe can only result from hitherto unknown fundamental interactions, and internal inconsistencies regarding the nature of neutrino masses challenge the completeness of the Standard Model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Natural units are used throughout this thesis, where \(\hbar = c = 1\), and inclusion of charge-conjugate processes is implied, unless otherwise specified.

References

  1. D. Hanneke, S.F. Hoogerheide, G. Gabrielse, Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment. Phys. Rev. A 83, 052122 (2011). https://doi.org/10.1103/PhysRevA.83.052122. arXiv:1009.4831

    Article  ADS  Google Scholar 

  2. J.D. Cockroft, E.T.S. Walton, Artificial production of fast protons. Nature 129 (1932)

    Google Scholar 

  3. H.-Y. Cheng, C.-K. Chua, Branching fractions and direct CP violation in charmless three-body decays of B mesons. Phys. Rev. D 88, 114014 (2013). https://doi.org/10.1103/PhysRevD.88.114014. arXiv:1308.5139

    Article  ADS  Google Scholar 

  4. S. Kränkl, T. Mannel, J. Virto, Three-body non-leptonic B decays and QCD factorization. Nucl. Phys. B899, 247 (2015). https://doi.org/10.1016/j.nuclphysb.2015.08.004, arXiv:1505.04111

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Cheng, A. Khodjamirian, J. Virto, \(B\rightarrow \pi \pi \) form factors from light-cone sum rules with \(B\)-meson distribution amplitudes. arXiv:1701.01633

  6. J. Lewis, R. van Kooten, Review of physics results from the Tevatron: heavy flavor physics. Int. J. Mod. Phys. A 30, 1541003 (2015). https://doi.org/10.1142/S0217751X15410031. arXiv:1412.5211

    Article  ADS  Google Scholar 

  7. C. Patrignani et al., Review of particle physics. Chin. Phys. C40, 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001. 2017 update

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel O’Hanlon .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Hanlon, D. (2018). Outline. In: Studies of CP-Violation in Charmless Three-Body b-Hadron Decays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02206-8_1

Download citation

Publish with us

Policies and ethics