Skip to main content

Assessing the Impact of Climate Change on Water Resources: The Challenge Posed by a Multitude of Options

  • Chapter
  • First Online:
Hydrology in a Changing World

Part of the book series: Springer Water ((SPWA))

Abstract

Global warming due to anthropogenic emissions of greenhouse gases is already altering the Earth’s climate. A changing climate implies shifts in long-term temperature and precipitation patterns, which in turn will affect the spatiotemporal distribution of water resources. It is imperative to study the impact of climate change on water resources so that adequate adaptation actions can be planned well in advance. We, therefore, need reliable methods to estimate how the timing and magnitude of available fresh water in a region may change in response to a changing climate. This chapter summarizes the main approaches that are used to achieve this goal. We focus on the numerous choices that a modeler faces when attempting to quantify the impact of climate change on water resources of a region. We discuss the relative strengths and weaknesses of each approach. These choices vary from the choice of model structures representing global climate and local hydrology, possible trajectories of greenhouse gas emissions in the future, to methods for model evaluation. Wherever feasible, we provide recommendations that can help a modeler in choosing an appropriate course of action. We conclude the chapter with a discussion on recent techniques developed to deal with large uncertainties in projections of climate change and possible research directions that will benefit the impact assessment community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986) An introduction to the European hydrological system—Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system. J Hydrol 87(1–2):45–59

    Article  Google Scholar 

  2. Andersson L, Samuelsson P, Kjellstro¨ME (2011) Assessment of climate change impact on water resources in the Pungwe river basin. Tellus A Dyn Meteorol Ocean 63(1):138–157

    Google Scholar 

  3. Arnell NW (1999) Climate change and global water resources. Glob Environ Chang 9:S31–S49

    Article  Google Scholar 

  4. Arnell NW (1999) A simple water balance model for the simulation of streamflow over a large geographic domain. J Hydrol 217(3–4):314–335

    Article  Google Scholar 

  5. Arnell NW, Gosling SN (2016) The impacts of climate change on river flood risk at the global scale. Clim Change 134(3):387–401

    Article  Google Scholar 

  6. Arnell NW, Hudson DA, Jones RG (2003) Climate change scenarios from a regional climate model: estimating change in runoff in Southern Africa. J Geophys Res Atmos 108(D16)

    Google Scholar 

  7. Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265(1–4):164–177

    Article  Google Scholar 

  8. Beck HE, van Dijk AI, de Roo A, Miralles DG, McVicar TR, Schellekens J, Bruijnzeel LA (2016) Global-scale regionalization of hydrologic model parameters. Water Resour Res 52(5):3599–3622

    Article  Google Scholar 

  9. Benke KK, Lowell KE, Hamilton AJ (2008) Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model. Math Comput Model 47(11–12):1134–1149

    Article  Google Scholar 

  10. Berghuijs WR, Woods RA, Hrachowitz M (2014) A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat Clim Chang 4(7):583

    Article  Google Scholar 

  11. Beven K (2001) How far can we go in distributed hydrological modelling? Hydrol Earth Syst Sci Discuss 5(1):1–12

    Article  Google Scholar 

  12. Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298

    Article  Google Scholar 

  13. Beven KJ (2011) Rainfall-runoff modelling: the primer. Wiley

    Google Scholar 

  14. Biggs EM, Bruce E, Boruff B, Duncan JM, Horsley J, Pauli N, McNeill K, Neef A, Van Ogtrop F, Curnow J, Haworth B (2015) Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ Sci Policy 54:389–397

    Google Scholar 

  15. Biswal B (2016) Dynamic hydrologic modeling using the zero-parameter Budyko model with instantaneous dryness index. Geophys Res Lett 43(18):9696–9703

    Article  Google Scholar 

  16. Biswal B, Singh R (2017) Incorporating channel network information in hydrologic response modelling: development of a model and inter-model comparison. Adv Water Resour 100:168–182

    Article  Google Scholar 

  17. Botter G, Porporato A, Rodriguez‐Iturbe I, Rinaldo A (2009) Nonlinear storage‐discharge relations and catchment streamflow regimes. Water Resour Res 45(10)

    Google Scholar 

  18. Brown C, Ghile Y, Laverty M, Li K (2012) Decision scaling: linking bottom‐up vulnerability analysis with climate projections in the water sector. Water Resour Res 48(9)

    Google Scholar 

  19. Camporese M, Paniconi C, Putti M, Orlandini S (2010) Surface‐subsurface flow modeling with path‐based runoff routing, boundary condition‐based coupling, and assimilation of multisource observation data. Water Resour Res 46(2)

    Google Scholar 

  20. Chu H, Wei J, Li J, Li T (2018) Investigation of the relationship between runoff and atmospheric oscillations, sea surface temperature, and local-scale climate variables in the Yellow River headwaters region. Hydrol Process 32(10):1434–1448

    Article  Google Scholar 

  21. Clark MP, Nijssen B, Lundquist JD, Kavetski D, Rupp DE, Woods RA, Freer JE, Gutmann ED, Wood AW, Brekke LD, Arnold JR (2015) A unified approach for process‐based hydrologic modeling: 1. Modeling concept. Water Resour Res 51(4):2498–2514

    Google Scholar 

  22. Clark MP, Slater AG, Rupp DE, Woods RA, Vrugt JA, Gupta HV, Wagener T, Hay LE (2008) Framework for understanding structural errors (FUSE): a modular framework to diagnose differences between hydrological models. Water Resour Res 44(12)

    Google Scholar 

  23. Deshmukh A, Singh R (2016) Physio-climatic controls on vulnerability of watersheds to climate and land use change across the US. Water Resour Res 52(11):8775–8793

    Article  Google Scholar 

  24. Dessai S, Hulme M (2004) Does climate adaptation policy need probabilities? Clim Policy 4(2):107–128

    Article  Google Scholar 

  25. Dessai S, Bhave A, Birch CE, Conway D, Garcia-Carreras L, Gosling JP, Mittal N, Stainforth DA (2018) Building narratives to characterise uncertainty in regional climate change through expert elicitation. Environ Res Lett

    Google Scholar 

  26. Devia GK, Ganasri BP, Dwarakish GS (2015) A review on hydrological models. Aquat Procedia 4:1001–1007

    Article  Google Scholar 

  27. Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Clim Change 69(2–3):245–268

    Article  Google Scholar 

  28. Diskin MH (1970) Definition and uses of the linear regression model. Water Resour Res 6(6):1668–1673

    Article  Google Scholar 

  29. Doulatyari B, Betterle A, Basso S, Biswal B, Schirmer M, Botter G (2015) Predicting streamflow distributions and flow duration curves from landscape and climate. Adv Water Resour 83:285–298

    Article  Google Scholar 

  30. Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336(6080):455–458

    Google Scholar 

  31. Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284(1–4):244–252

    Article  Google Scholar 

  32. Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol Sci J–J Des Sci Hydrol 55(1):58–78

    Article  Google Scholar 

  33. Evans S, Zanni A, Ford A, Dawson R, Barr S, Walsh C, Tight M, Köhler J, Harwatt H, Batty M, Hall J (2017) A blueprint for the integrated assessment of climate change in cities. In: Green citynomics. Routledge, pp 46–66

    Google Scholar 

  34. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578

    Article  Google Scholar 

  35. Gleick PH (2014) Water, drought, climate change, and conflict in Syria. Weather Clim Soc 6(3):331–340

    Article  Google Scholar 

  36. Gosain AK, Rao S, Arora A (2011) Climate change impact assessment of water resources of India. Curr Sci, 356–371

    Google Scholar 

  37. Gosain AK, Rao S, Basuray D (2006) Climate change impact assessment on hydrology of Indian river basins. Curr Sci, 346–353

    Google Scholar 

  38. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

    Article  Google Scholar 

  39. Graham LP, Hagemann S, Jaun S, Beniston M (2007) On interpreting hydrological change from regional climate models. Clim Change 81(1):97–122

    Article  Google Scholar 

  40. Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, Hanasaki N, Konzmann M, Ludwig F, Masaki Y, Schewe J, Stacke T (2014) Global water resources affected by human interventions and climate change. Proc Natl Acad Sci 111(9):3251–3256

    Google Scholar 

  41. Hengade N, Eldho TI (2016) Assessment of LULC and climate change on the hydrology of ashti catchment, India using VIC model. J Earth Syst Sci 125(8):1623–1634

    Article  Google Scholar 

  42. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1):83–95

    Article  Google Scholar 

  43. Jakeman AJ, Hornberger GM (1993) How much complexity is warranted in a rainfall-runoff model? Water Resour Res 29(8):2637–2649

    Article  Google Scholar 

  44. Kay AL, Davies HN, Bell VA, Jones RG (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Change 92(1–2):41–63

    Article  Google Scholar 

  45. Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y (2015) Climate change in the fertile crescent and implications of the recent Syrian drought. Proc Natl Acad Sci, 201421533

    Google Scholar 

  46. Klemeš V (1983) Conceptualization and scale in hydrology. J Hydrol 65(1–3):1–23

    Article  Google Scholar 

  47. Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res Atmos 99(D7):14415–14428

    Article  Google Scholar 

  48. Lohmann D, Raschke E, Nijssen B, Lettenmaier DP (1998) Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol Sci J 43(1):131–141

    Google Scholar 

  49. Manabe S, Smagorinsky J, Strickler RF (1965) Simulated climatology of a general circulation model with a hydrologic cycle. Mon Weather Rev 93(12):769–798

    Article  Google Scholar 

  50. Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2(2):e1500323

    Google Scholar 

  51. Moore RJ (2007) The PDM rainfall-runoff model. Hydrol Earth Syst Sci Discuss 11(1):483–499

    Article  Google Scholar 

  52. Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291(1–2):52–66

    Article  Google Scholar 

  53. Němec J, Schaake J (1982) Sensitivity of water resource systems to climate variation. Hydrol Sci J 27(3):327–343

    Article  Google Scholar 

  54. Oudin L, Andréassian V, Perrin C, Michel C, Le Moine N (2008) Spatial proximity, physical similarity, regression and ungaged catchments: a comparison of regionalization approaches based on 913 French catchments. Water Resour Res 44(3)

    Google Scholar 

  55. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, p 151

    Google Scholar 

  56. Panagoulia D, Dimou G (1996) Sensitivities of groundwater-streamflow interaction to global climate change. Hydrol Sci J 41(5):781–796

    Article  Google Scholar 

  57. Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (eds) (2007) Climate change 2007-impacts, adaptation and vulnerability: working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press

    Google Scholar 

  58. Patil S, Stieglitz M (2011) Hydrologic similarity among catchments under variable flow conditions. Hydrol Earth Syst Sci 15(3):989–997

    Article  Google Scholar 

  59. Poff NL, Brown CM, Grantham TE, Matthews JH, Palmer MA, Spence CM, Wilby RL, Haasnoot M, Mendoza GF, Dominique KC, Baeza A (2016) Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat Clim Chang 6(1):25

    Google Scholar 

  60. Raje D, Mujumdar PP (2010) Reservoir performance under uncertainty in hydrologic impacts of climate change. Adv Water Resour 33(3):312–326

    Article  Google Scholar 

  61. Razavi T, Coulibaly P (2012) Streamflow prediction in ungauged basins: review of regionalization methods. J Hydrol Eng 18(8):958–975

    Article  Google Scholar 

  62. Refsgaard JC (1997) Parameterisation, calibration and validation of distributed hydrological models. J Hydrol 198(1–4):69–97

    Article  Google Scholar 

  63. Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 6:7423

    Article  Google Scholar 

  64. Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8(1):708

    Google Scholar 

  65. Samaniego L, Thober S, Kumar R, Wanders N, Rakovec O, Pan M, Zink M, Sheffield J, Wood EF, Marx A (2018) Anthropogenic warming exacerbates European soil moisture droughts. Nat Clim Chang 8(5):421

    Article  Google Scholar 

  66. Sankarasubramanian A, Vogel RM, Limbrunner JF (2001) Climate elasticity of streamflow in the United States. Water Resour Res 37(6):1771–1781

    Article  Google Scholar 

  67. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111(9):3245–3250

    Article  Google Scholar 

  68. Schulze RE (1997) Impacts of global climate change in a hydrologically vulnerable region: challenges to South African hydrologists. Prog Phys Geogr 21(1):113–136

    Google Scholar 

  69. Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35(4):397–414

    Article  Google Scholar 

  70. Sharmila S, Joseph S, Sahai AK, Abhilash S, Chattopadhyay R (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Chang 124:62–78

    Article  Google Scholar 

  71. Singh VP (2018) Hydrologic modeling: progress and future directions. Geosci Lett 5(1):15

    Article  Google Scholar 

  72. Singh R, Kumar R (2015) Vulnerability of water availability in India due to climate change: a bottom-up probabilistic budyko analysis. Geophys Res Lett 42(22):9799–9807

    Article  Google Scholar 

  73. Singh R, Wagener T, Werkhoven KV, Mann ME, Crane R (2011) A trading-space-for-time approach to probabilistic continuous streamflow predictions in a changing climate–accounting for changing watershed behavior. Hydrol Earth Syst Sci 15(11):3591–3603

    Article  Google Scholar 

  74. Sivapalan M, Savenije HH, Blöschl G (2012) Socio-hydrology: a new science of people and water. Hydrol Process 26(8):1270–1276

    Article  Google Scholar 

  75. Sood A, Smakhtin V (2015) Global hydrological models: a review. Hydrol Sci J 60(4):549–565

    Article  Google Scholar 

  76. Stryker J, Wemple B, Bomblies A (2017) Modeling sediment mobilization using a distributed hydrological model coupled with a bank stability model. Water Resour Res 53(3):2051–2073

    Article  Google Scholar 

  77. Tai X, Mackay DS, Sperry JS, Brooks P, Anderegg WR, Flanagan LB, Rood SB, Hopkinson C (2018) Distributed plant hydraulic and hydrological modeling to understand the susceptibility of riparian woodland trees to drought‐induced mortality. Water Resour Res

    Google Scholar 

  78. Thirel G, Andréassian V, Perrin C (2015) On the need to test hydrological models under changing conditions. Hydrol Sci J

    Google Scholar 

  79. Velázquez JA, Schmid J, Ricard S, Muerth MJ, Gauvin St-Denis B, Minville M, Chaumont D, Caya D, Ludwig R, Turcotte R (2013) An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources. Hydrol Earth Syst Sci 17(2):565–578

    Article  Google Scholar 

  80. Vogel RM, Wilson I, Daly C (1999) Regional regression models of annual streamflow for the United States. J Irrig Drain Eng 125(3):148–157

    Article  Google Scholar 

  81. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5

    Article  Google Scholar 

  82. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288

    Article  Google Scholar 

  83. Vörösmarty CJ, Moore B, Grace AL, Gildea MP, Melillo JM, Peterson BJ, Rastetter EB, Steudler PA (1989) Continental scale models of water balance and fluvial transport: an application to South America. Glob Biogeochem Cycles 3(3):241–265

    Article  Google Scholar 

  84. Weinthal E, Zawahri N, Sowers J (2015) Securitizing water, climate, and migration in Israel, Jordan, and Syria. Int Environ Agreem Polit Law Econ 15(3):293–307

    Google Scholar 

  85. Westra S, Thyer M, Leonard M, Kavetski D, Lambert M (2014) A strategy for diagnosing and interpreting hydrological model nonstationarity. Water Resour Res 50(6):5090–5113

    Article  Google Scholar 

  86. Whitehead PG, Barbour E, Futter MN, Sarkar S, Rodda H, Caesar J, Butterfield D, Jin L, Sinha R, Nicholls R, Salehin M. 2015. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. Environ Sci Process Impacts 17(6):1057–1069

    Google Scholar 

  87. Wilby RL, Whitehead PG, Wade AJ, Butterfield D, Davis RJ, Watts G (2006) Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. J Hydrol 330(1–2):204–220

    Article  Google Scholar 

  88. Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: fow‐flow scenarios for the River Thames, UK. Water Resour Res 42(2)

    Google Scholar 

  89. Wood EF, Lettenmaier DP, Zartarian VG (1992) A land-surface hydrology parameterization with subgrid variability for general circulation models. J Geophys Res Atmos 97(D3):2717–2728

    Article  Google Scholar 

  90. Wu CL, Chau KW, Li YS (2009) Predicting monthly streamflow using data‐driven models coupled with data‐preprocessing techniques. Water Resour Res 45(8)

    Google Scholar 

  91. Xu CY, Widén E, Halldin S (2005) Modelling hydrological consequences of climate change—progress and challenges. Adv Atmos Sci 22(6):789–797

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riddhi Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Biswal, B. (2019). Assessing the Impact of Climate Change on Water Resources: The Challenge Posed by a Multitude of Options. In: Singh, S., Dhanya, C. (eds) Hydrology in a Changing World. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-02197-9_9

Download citation

Publish with us

Policies and ethics