Skip to main content

An Analysis of Spatio-Temporal Changes in Drought Characteristics over India

  • Chapter
  • First Online:
Hydrology in a Changing World

Part of the book series: Springer Water ((SPWA))

Abstract

Regional drought mitigation efforts depend on reliable estimates of intensity and severity of drought events. Most operational methods used for drought classification do not account modeling uncertainties and provide discrete drought classification. However, when uncertainty estimates in classification are available, they can be used to make informed decisions. This study compares a gamma-mixture-model-based probabilistic drought classification method that quantifies uncertainties in drought classification with the standardized precipitation index (SPI) that provides discrete classification. Further, if the precipitation data are nonstationary, then classical methods of drought classification are not applicable, and an alternate method for drought classification for trend stationary precipitation series is presented. This method is tested on synthetic and real-world precipitation data over India. The alternate method offers flexibility in modeling nonstationary time series. The advantages and limitations of this method are discussed along with a set of concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AghaKouchak A (2014) A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 United States drought. Hydrol Earth Syst Sci 18:2485–2492

    Article  Google Scholar 

  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  3. Bagla P (2006) Controversial rivers project aims to turn India’s fierce monsoon into a friend. Science 313:1036–1037. https://doi.org/10.1126/science.313.5790.1036

    Article  Google Scholar 

  4. Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. J Hydrol 508:418–429. https://doi.org/10.1016/j.jhydrol.2013.10.052

    Article  Google Scholar 

  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  6. Bishop CM (2006) Pattern Recognition and Machine Learning. Springer, New York

    Google Scholar 

  7. Bonaccorso B, Peres DJ, Cancelliere A, Rossi G (2013) Large scale probabilistic drought characterization over Europe. Water Resour Manag 27:1675–1692. https://doi.org/10.1007/s11269-012-0177-z

    Article  Google Scholar 

  8. Burn DH, Elnur MAH (2002) Detection of hydrologic trends and variability. J Hydrol 255:107–122. https://doi.org/10.1016/S0022-1694(01)00514-5

    Article  Google Scholar 

  9. Burroughs WJ (1999) The climate revealed. Cambridge University Press

    Google Scholar 

  10. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill. Ser Water Resour Environ Eng

    Google Scholar 

  11. Cole JE, Cook ER (1998) The changing relationship between ENSO variability and moisture balance in the continental United States. Geophys Res Lett 25:4529–4532. https://doi.org/10.1029/1998GL900145

    Article  Google Scholar 

  12. Coulibaly P, Baldwin CK (2005) Nonstationary hydrological time series forecasting using nonlinear dynamic methods. J Hydrol 307:164–174

    Article  Google Scholar 

  13. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  14. De U, Dube R, Rao GP (2005) Extreme weather events over India in the last 100 years. J Ind Geophys Union 9:173–187

    Google Scholar 

  15. Deshingkar P, Start D (2003) Seasonal migration for livelihoods in India: coping, accumulation and exclusion. Overseas Development Institute London

    Google Scholar 

  16. DeVore RA, Lorentz GG (1993) Constructive approximation. Springer

    Google Scholar 

  17. Dracup JA, Lee KS, Paulson EG Jr (1980). On the definition of droughts. Water Resour Res 16:297–302. https://doi.org/10.1029/WR016i002p00297

  18. Dubrovsky M, Svoboda MD, Trnka M, Hayes MJ, Wilhite DA, Zalud Z, Hlavinka P (2009) Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theor Appl Climatol 96:155–171. https://doi.org/10.1007/s00704-008-0020-x

    Article  Google Scholar 

  19. Evin G, Merleau J, Perreault L (2011) Two-component mixtures of normal, gamma, and Gumbel distributions for hydrological applications (W08525). Water Resour Res 47. https://doi.org/10.1029/2010WR010266

  20. Federal Emergency Management Agency (1995) National Mitigation Strategy. FEMA Wash. DC

    Google Scholar 

  21. Friedman DG (1957) The prediction of long-continuing drought in south and southwest Texas. Ocassional Pap Meteorol 1, 182

    Google Scholar 

  22. Fuller W-A (1996) Introduction to statistical time series

    Google Scholar 

  23. Gao B-C (1996) NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266

    Article  Google Scholar 

  24. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI-6, 721–741. https://doi.org/10.1109/TPAMI.1984.4767596

  25. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. https://doi.org/10.1126/science.1132027

    Article  Google Scholar 

  26. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732. https://doi.org/10.1093/biomet/82.4.711

    Article  Google Scholar 

  27. Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. JAWRA J Am Water Resour Assoc 35:311–322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x

    Article  Google Scholar 

  28. Hamed KH, Ramachandra Rao A (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196. https://doi.org/10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  29. Han P, Wang PX, Zhang SY, Zhu DH (2010) Drought forecasting based on the remote sensing data using ARIMA models. Math Comput Model Agric 51:1398–1403. https://doi.org/10.1016/j.mcm.2009.10.031

    Article  Google Scholar 

  30. Hayes M, Svoboda M, Wall N, Widhalm M (2011) The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bull Am Meteorol Soc 92:485–488

    Article  Google Scholar 

  31. Hayes MJ, Wilhelmi OV, Knutson CL (2004) Reducing drought risk: bridging theory and practice. Nat Hazards Rev 5:106–113

    Article  Google Scholar 

  32. Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83:1149

    Article  Google Scholar 

  33. Hogg R, Tanis E, Zimmerman D (2014) Probability and statistical inference. Pearson Higher Ed

    Google Scholar 

  34. Houghton JT, Ding Y, Griggs DJ, Noguer N, van der Linden PJ, Xiaosu D, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press

    Google Scholar 

  35. Kao SC, Govindaraju RS (2010) A copula-based joint deficit index for droughts. J Hydrol 380(1–2):121–134. https://doi.org/10.1016/j.jhydrol.2009.10.029

  36. Kripalani RH, Kumar P (2004) Northeast monsoon rainfall variability over south peninsular India vis-à-vis the Indian Ocean dipole mode. Int J Climatol 24:1267–1282. https://doi.org/10.1002/joc.1071

    Article  Google Scholar 

  37. Krishnamurthy V, Shukla J (2000) Intraseasonal and interannual variability of rainfall over India. J Clim 13:4366–4377. https://doi.org/10.1175/1520-0442(2000)013%3c0001:IAIVOR%3e2.0.CO;2

  38. Kulkarni A, von Storch H (1995) Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol Z 4:82–85

    Article  Google Scholar 

  39. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119

    Article  Google Scholar 

  40. Liu W, Kogan F (1996) Monitoring regional drought using the vegetation condition index. Int J Remote Sens 17:2761–2782

    Article  Google Scholar 

  41. Liu WT, Juárez RIN (2001) ENSO drought onset prediction in northeast Brazil using NDVI. Int J Remote Sens 22:3483–3501. https://doi.org/10.1080/01431160010006430

    Article  Google Scholar 

  42. Lloyd-Huges B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592

    Article  Google Scholar 

  43. Loukas A, Vasiliades L (2004) Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Nat Hazards Earth Syst Sci 4:719–731

    Article  Google Scholar 

  44. Mahajan DR, Dodamani BM (2015) Trend analysis of drought events over upper krishna basin in Maharashtra. Aquat Procedia 4:1250–1257. https://doi.org/10.1016/j.aqpro.2015.02.163

  45. Mallya G, Mishra V, Niyogi D, Tripathi S, Govindaraju RS (2016) Trends and variability of droughts over the Indian monsoon region. Weather Clim Extrem. https://doi.org/10.1016/j.wace.2016.01.002

  46. Mallya G, Tripathi S, Govindaraju RS (2017) Detection of temporal changes in droughts over Indiana (under review)

    Google Scholar 

  47. Mallya G, Tripathi S, Govindaraju RS (2015) Probabilistic drought classification using gamma mixture models. J Hydrol 526:116–126

    Article  Google Scholar 

  48. Mallya G, Tripathi S, Kirshner S, Govindaraju RS (2013) Probabilistic assessment of drought characteristics using hidden Markov model. J Hydrol Eng 18:834–845. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000699

    Article  Google Scholar 

  49. Mann ME, Bradley RS, Huges MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759

    Article  Google Scholar 

  50. McKee TB, Doesken NJ, Kleist J (1995) Drought monitoring with multiple time scales. In: Proceedings of the 9th conference on applied climatology. American meteorological society dallas, Boston, MA, pp 233–236

    Google Scholar 

  51. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Conference on applied climatology. American Meteorological Society, Anaheim, CA

    Google Scholar 

  52. Mishra AK, Desai VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198:127–138. https://doi.org/10.1016/j.ecolmodel.2006.04.017

    Article  Google Scholar 

  53. Mishra AK, Desai VR, Singh VP (2007) Drought forecasting using a hybrid stochastic and neural network model. J Hydrol Eng 12:626–638. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(626)

    Article  Google Scholar 

  54. Mishra AK, Singh VP (2011) Drought modeling–a review. J Hydrol 403:157–175

    Article  Google Scholar 

  55. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  56. Mitra S, Srivastava P (2016) Spatiotemporal variability of meteorological droughts in southeastern USA. Nat Hazards, 1–32. https://doi.org/10.1007/s11069-016-2728-8

  57. Naresh Kumar M, Murthy CS, Sesha Sai MVR, Roy PS (2011) Spatiotemporal analysis of meteorological drought variability in the Indian region using standardized precipitation index. Meteorol Appl https://doi.org/10.1002/met.277

  58. Niranjan Kumar K, Rajeevan M, Pai DS, Srivastava AK, Preethi B (2013) On the observed variability of monsoon droughts over India. Weather Clim Extrem 1:42–50. https://doi.org/10.1016/j.wace.2013.07.006

    Article  Google Scholar 

  59. Niyogi D, Kishtawal C, Tripathi S, Govindaraju RS (2010) Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resour Res 46, 17. https://doi.org/10.1029/2008WR007082

  60. Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the new crop moisture index. Weatherwise 21:156–161. https://doi.org/10.1080/00431672.1968.9932814

    Article  Google Scholar 

  61. Palmer WC (1965) Meteorological drought, Research Paper No. 45. US Weather Bureau, Washington DC

    Google Scholar 

  62. Parathasarathy B, Munot A, Kothawale D (1994) Droughts over homogeneous regions of India: 1871–1990. Drought Network News 1994–2001 67

    Google Scholar 

  63. Rajeevan M (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296

    Google Scholar 

  64. Rao G (2001) Household coping/survival strategies in drought-prone regions: a case study of Anantapur district. Andhra Pradesh India SPWD-Hyderabad Cent

    Google Scholar 

  65. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:29. https://doi.org/10.1029/2002JD002670

  66. Richardson S, Green PJ (1997) On Bayesian analysis of mixtures with an unknown number of components (with discussion). J R Stat Soc Ser B Stat Methodol 59:731–792. https://doi.org/10.1111/1467-9868.00095

    Article  Google Scholar 

  67. Rossi G, Cancelliere A (2003) At-site and regional drought identification by Redim model. In: Rossi G, Cancelliere A, Pereira LS, Oweis T, Shatanawi M, Zairi A (eds) Tools for drought mitigation in mediterranean regions, water science and technology library. Springer, Netherlands, pp 37–54

    Chapter  Google Scholar 

  68. Russo S, Dosio A, Sterl A, Barbosa P, Vogt J (2013) Projection of occurrence of extreme dry-wet years and seasons in Europe with stationary and nonstationary standardized precipitation Indices. J Geophys Res Atmos 118:7628–7639. https://doi.org/10.1002/jgrd.50571

    Article  Google Scholar 

  69. Ryu JH, Svoboda MD, Lenters JD, Tadesse T, Knutson CL (2010) Potential extents for ENSO-driven hydrologic drought forecasts in the United States. Clim Change 101:575–597. https://doi.org/10.1007/s10584-009-9705-0

    Article  Google Scholar 

  70. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  71. Shafer BA, Dezman LE (1982) Development of a Surface Water Supply Index (SWSI) to assess the severity of drought conditions in snowpack runoff areas

    Google Scholar 

  72. Shiau J-T, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21:2157–2163. https://doi.org/10.1002/hyp.6400

    Article  Google Scholar 

  73. Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35:7. https://doi.org/10.1029/2007GL032487

  74. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor M, Miller HL Jr, Chen Z (2007) Climate change 2007: the physical science basis

    Google Scholar 

  75. Sprague LA (2005) Drought effects on water quality in the south platte river basin, Colorado1. JAWRA J Am Water Resour Assoc 41:11–24. https://doi.org/10.1111/j.1752-1688.2005.tb03713.x

    Article  Google Scholar 

  76. Steinemann A (2003) Drought indicators and triggers: a stochastic approach to evaluation. Wiley Online Library

    Google Scholar 

  77. Türkeş M, Tatlı H (2009) Use of the standardized precipitation index (SPI) and a modified SPI for shaping the drought probabilities over Turkey. Int J Climatol 29:2270–2282. https://doi.org/10.1002/joc.1862

    Article  Google Scholar 

  78. Varikoden H, Revadekar JV, Choudhary Y, Preethi B (2015) Droughts of Indian summer monsoon associated with El Niño and Non-El Niño years. Int J Climatol 35:1916–1925. https://doi.org/10.1002/joc.4097

    Article  Google Scholar 

  79. Ventura V, Paciorek CJ, Risbey JS (2004) Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J Clim 17:4343–4356. https://doi.org/10.1175/3199.1

    Article  Google Scholar 

  80. Verdon-Kidd DC, Kiem AS (2010) Quantifying drought risk in a nonstationary climate. J Hydrometeorol 11:1019–1031. https://doi.org/10.1175/2010JHM1215.1

    Article  Google Scholar 

  81. Wilhite DA, Glantz MH (1985) Understanding: the drought phenomenon: the role of definitions. Water Int 10:111–120. https://doi.org/10.1080/02508068508686328

    Article  Google Scholar 

  82. Wiper M, Insua DR, Ruggeri F (2001) Mixtures of gamma distributions with applications. J Comput Graph Stat 10:440–454. https://doi.org/10.1198/106186001317115054

    Article  Google Scholar 

  83. WMO (1975) “Drought and agriculture,” WMO Technical Note No. 138, Report of the CAgM Working Group on the Assessment of Drought, Geneva, Switzerland 127

    Google Scholar 

  84. Wu Z, Huang NE, Long SR, Peng C-K (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci 104:14889–14894

    Article  Google Scholar 

  85. Yue S, Wang CY (2002) Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour Res 38:1068. https://doi.org/10.1029/2001WR000861

    Article  Google Scholar 

  86. Zhang X, Obringer R, Wei C, Chen N, Niyogi D (2017) Droughts in India from 1981 to 2013 and implications to wheat production. Sci Rep 7:44552. https://doi.org/10.1038/srep44552

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao S. Govindaraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mallya, G., Tripathi, S., Govindaraju, R.S. (2019). An Analysis of Spatio-Temporal Changes in Drought Characteristics over India. In: Singh, S., Dhanya, C. (eds) Hydrology in a Changing World. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-02197-9_2

Download citation

Publish with us

Policies and ethics