Advertisement

Integration of GRACE Data for Improvement of Hydrological Models

  • Chandan Banerjee
  • D. Nagesh KumarEmail author
Chapter
Part of the Springer Water book series (SPWA)

Abstract

Terrestrial Water Storage (TWS) data, now available for more than 15 years, as furnished by the Gravity Recovery and Climate Experiment (GRACE) satellite mission provided remarkable insights into the hydrological cycle. An expanding volume of scientific literature bears testimony to this. Besides identifying the alarming rate of both global groundwater storage depletion and polar ice cap melt, which are considered as its major accomplishments, the GRACE dataset also provided an exceptional resource for the improvement of the hydrological models. Such studies, although large in number, can be broadly classified into two categories: (1) Model evaluation studies, comparing regional or global model outputs with GRACE-derived hydrological parameters and (2) data assimilation techniques, where GRACE data is incorporated into the modeling framework. Model evaluation techniques vary in terms of the choice of hydrologic parameter, which in most cases is TWS or groundwater. On the other hand, data assimilation strategies in most of the studies use ensemble Kalman filter or its variant to incorporate the information derived from GRACE data into the models. This chapter reviews the integration methodologies highlighting the different aspects of model improvement such as the hydrologic parameter of interest, complexity of the model framework, and representation of hydrological processes. However, the present discussion is restricted to conceptual hydrological models and do not include statistical or GRACE-based water balance models.

References

  1. 1.
    Ahmed M, Sultan M, Yan E, Wahr J (2016) Assessing and improving land surface model outputs over africa using GRACE, field, and remote sensing data. Surv Geophys 37(3):529–556.  https://doi.org/10.1007/s10712-016-9360-8CrossRefGoogle Scholar
  2. 2.
    Alcamo J, Doll P, Henrichs T, Kaspar F, Lehner B, Rosch T, Siebert S (2003), Development and testing of the WaterGAP 2 global model of water use and availability. Hydrolog Sci J 48(3):317–337.  https://doi.org/10.1623/hysj.48.3.317.45290
  3. 3.
    Alkama R, Decharme B, Douville H, Becker M, Cazenave A, Sheffield J, Voldoire A, Tyteca S, Le Moigne P (2010) Global evaluation of the ISBA-TRIP continental hydrological system. Part I: comparison to GRACE terrestrial water storage estimates and in situ river discharges. J Hydrometeorol 11(3):583–600.  https://doi.org/10.1175/2010JHM1211.1CrossRefGoogle Scholar
  4. 4.
    Alkama R, Decharme B, Douville H, Ribes A (2011) Trends in global and basin-scale runoff over the late twentieth century: Methodological issues and sources of uncertainty. J. Climate 24, 3000–3014.  https://doi.org/10.1175/2010JCLI3921.1
  5. 5.
    Alsdorf D, Han SC, Bates P, Melack J (2010) Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ 114(11):2448–2456.  https://doi.org/10.1016/j.rse.2010.05.020CrossRefGoogle Scholar
  6. 6.
    Alsdorf DE, Lettenmaier DP (2003) Tracking fresh water from space. Science 301(5639):1491–1494.  https://doi.org/10.1126/science.1089802
  7. 7.
    Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrol Process 19(3):563–572.  https://doi.org/10.1002/hyp.5611CrossRefGoogle Scholar
  8. 8.
    Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment-Part 1: model development. J Am Water Resour Assoc 34(1):73–89.  https://doi.org/10.1111/j.1752-1688.1998.tb05961.xCrossRefGoogle Scholar
  9. 9.
    Beven KJ, Kirkby MJ, Schofield N, Tagg AF (1984) Testing a physically-based flood forecasting model (TOPMODEL) for three U.K. catchments. J Hydrol 69(1):119–143.  https://doi.org/10.1016/0022-1694(84)90159-8
  10. 10.
    Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng XB, Dai YJ, Dickinson RE, Yang ZL (2002) The land surface climatology of the community land model coupled to the NCAR community climate model. J Climate 15(22):3123–3149.  https://doi.org/10.1175/1520-0442(2002)015%3c3123:tlscot%3e2.0.co;2
  11. 11.
    Boughton WC (1989) A review of the Usda Scs curve number method. Aust J Soil Res 27(3):511–523.  https://doi.org/10.1071/sr9890511
  12. 12.
    Brena-Naranjo JA, Kendall AD, Hyndman DW (2014) Improved methods for satellite-based groundwater storage estimates: a decade of monitoring the high plains aquifer from space and ground observations. Geophys Res Lett 41(17):6167–6173.  https://doi.org/10.1002/2014GL061213CrossRefGoogle Scholar
  13. 13.
    Cai XT, Yang ZL, David CH, Niu GY, Rodell M (2014) Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J Geophys Res Atmos 119(1):23–38.  https://doi.org/10.1002/2013JD020792CrossRefGoogle Scholar
  14. 14.
    Charnell RL, Maul GA (1973) Oceanic observation of New york bight by Erts-1. Nature 242(5398):451–452.  https://doi.org/10.1038/242451a0CrossRefGoogle Scholar
  15. 15.
    Chen JL, Wilson CR, Tapley BD, Scanlon B, Guntner A (2016) Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Glob Planet Change 139:56–65.  https://doi.org/10.1016/j.gloplacha.2016.01.002CrossRefGoogle Scholar
  16. 16.
    Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32(14).  https://doi.org/10.1029/2005gl022964
  17. 17.
    Clark MP, Bierkens MFP, Samaniego L, Woods RA, Uijlenhoet R, Bennett KE, Pauwels VRN, Cai XT, Wood AW, Peters-Lidard CD (2017) The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrol Earth Syst Sci 21(7):3427–3440.  https://doi.org/10.5194/hess-21-3427-2017
  18. 18.
    Darbeheshti N, Wegener H, Muller V, Naeimi M, Heinzel G, Hewitson M (2017) Instrument data simulations for GRACE Follow-on: observation and noise models. Earth Syst Sci Data 9(2):833–848.  https://doi.org/10.5194/essd-9-833-2017
  19. 19.
    Decharme B, Alkama R, Douville H, Becker M, Cazenave A (2010) Global evaluation of the ISBA-TRIP continental hydrological system Part II: uncertainties in river routing simulation related to flow velocity and groundwater storage. J Hydrometeorol 11(3):601–617.  https://doi.org/10.1175/2010JHM1212.1CrossRefGoogle Scholar
  20. 20.
    Doll P, Fritsche M, Eicker A, Muller Schmied H (2014) Seasonal water storage variations as impacted by water abstractions: comparing the output of a global hydrological model with GRACE and GPS observations. Surv Geophys 35(6):1311–1331.  https://doi.org/10.1007/s10712-014-9282-2CrossRefGoogle Scholar
  21. 21.
    Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. J Geophys Res-Atmos 108(D22).  https://doi.org/10.1029/2002jd003296
  22. 22.
    Evensen G (2003) The ensemble kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367.  https://doi.org/10.1007/s10236-003-0036-9CrossRefGoogle Scholar
  23. 23.
    Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s central valley. Geophys Res Lett 38.  https://doi.org/10.1029/2010gl046442
  24. 24.
    Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250CrossRefGoogle Scholar
  25. 25.
    Girotto M, De Lannoy GJM, Reichle RH, Rodell M (2016) Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model. Water Resour Res 52(5):4164–4183.  https://doi.org/10.1002/2015WR018417CrossRefGoogle Scholar
  26. 26.
    Girotto M, De Lannoy GJM, Reichle RH, Rodell M, Draper C, Bhanja SN, Mukherjee A (2017) Benefits and pitfalls of GRACE data assimilation: a case study of terrestrial water storage depletion in India. Geophys Res Lett 44(9):4107–4115.  https://doi.org/10.1002/2017GL072994CrossRefGoogle Scholar
  27. 27.
    Grippa M et al (2011) Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour Res 47.  https://doi.org/10.1029/2009wr008856
  28. 28.
    Hardy RA, Nerem RS, Wiese DN (2017) The impact of atmospheric modeling errors on GRACE estimates of mass loss in Greenland and Antarctica. J Geophys Res Solid Earth 122(12):10440–10458.  https://doi.org/10.1002/2017JB014556CrossRefGoogle Scholar
  29. 29.
    Houborg R, Rodell M, Li BL, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour Res 48.  https://doi.org/10.1029/2011wr011291
  30. 30.
    Huang Y, Salama MS, Krol MS, Su ZB, Hoekstra AY, Zeng YJ, Zhou YX (2015a) Estimation of human-induced changes in terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: a case study of the Yangtze River basin. Water Resour Res 51(10):8494–8516.  https://doi.org/10.1002/2015wr016923
  31. 31.
    Huang ZY, Pan Y, Gong HL, Yeh PJF, Li XJ, Zhou DM, Zhao WJ (2015b) Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophys Res Lett 42(6):1791–1799.  https://doi.org/10.1002/2014gl062498
  32. 32.
    Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50(3):2679–2692.  https://doi.org/10.1002/2013WR014633CrossRefGoogle Scholar
  33. 33.
    Khaki M, Hoteit I, Kuhn M, Awange J, Forootan E, van Dijk AIJM, Schumacher M, Pattiaratchi C (2017) Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model. Adv Water Resour 107:301–316.  https://doi.org/10.1016/j.advwatres.2017.07.001CrossRefGoogle Scholar
  34. 34.
    Khandu, Forootan E, Schumacher M, Awange JL, Muller Schmied H (2016) Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna River Basin. Water Resour Res 52(3):2240–2258.  https://doi.org/10.1002/2015wr018113
  35. 35.
    Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175(2):417–432.  https://doi.org/10.1111/j.1365-246X.2008.03922.xCrossRefGoogle Scholar
  36. 36.
    Kouwen N, Soulis ED, Pietroniro A, Donald J, Harrington RA (1993) Grouped response units for distributed hydrologic modeling. J Water Res Plan Manag 119(3):289–305.  https://doi.org/10.1061/(Asce)0733-9496(1993)119:3(289)CrossRefGoogle Scholar
  37. 37.
    Kumar SV et al (2016) Assimilation of gridded GRACE terrestrial water storage estimates in the North American land data assimilation system. J Hydrometeorol 17(7):1951–1972.  https://doi.org/10.1175/Jhm-D-15-0157.1CrossRefGoogle Scholar
  38. 38.
    Landerer FW, Dickey JO, Guntner A (2010) Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J Geophys Res Atmos 115.  https://doi.org/10.1029/2010jd014584
  39. 39.
    Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48.  https://doi.org/10.1029/2011wr011453
  40. 40.
    Li B, Rodell M (2015) Evaluation of a model-based groundwater drought indicator in the conterminous U.S. J Hydrol 526:78–88.  https://doi.org/10.1016/j.jhydrol.2014.09.027CrossRefGoogle Scholar
  41. 41.
    Li BL, Rodell M, Zaitchik BF, Reichle RH, Koster RD, van Dam TM (2012) Assimilation of GRACE terrestrial water storage into a land surface model: evaluation and potential value for drought monitoring in western and central Europe. J Hydrol 446:103–115.  https://doi.org/10.1016/j.jhydrol.2012.04.035CrossRefGoogle Scholar
  42. 42.
    Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models. J Geophys Res Atmos 99(D7):14415–14428.  https://doi.org/10.1029/94jd00483CrossRefGoogle Scholar
  43. 43.
    Liu X, Ditmar P, Siemes C, Slobbe DC, Revtova E, Klees R, Riva R, Zhao Q (2010) DEOS Mass Transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys J Int 181(2):769–788.  https://doi.org/10.1111/j.1365-246X.2010.04533.xCrossRefGoogle Scholar
  44. 44.
    Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36(4):441–500.  https://doi.org/10.1029/97rg03139CrossRefGoogle Scholar
  45. 45.
    Moiwo JP, Yang YH, Tao FL, Lu WX, Han SM (2011) Water storage change in the himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model. Water Resour Res 47.  https://doi.org/10.1029/2010wr010157
  46. 46.
    Nemmour H, Chibani Y (2006) Multiple support vector machines for land cover change detection: an application for mapping urban extensions. ISPRS J Photogramm Remote Sens 61(2):125–133.  https://doi.org/10.1016/j.isprsjprs.2006.09.004CrossRefGoogle Scholar
  47. 47.
    Ngo-Duc, T, Laval K, Ramillien G, Polcher J, Cazenave A (2007) Validation of the land water storage simulated by Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) with Gravity Recovery and Climate Experiment (GRACE) data. Water Resour Res 43(4).  https://doi.org/10.1029/2006wr004941
  48. 48.
    Niu GY, Yang ZL (2006a) Assessing a land surface model’s improvements with GRACE estimates. Geophys Res Lett 33(7).  https://doi.org/10.1029/2005gl025555
  49. 49.
    Niu GY, Yang ZL (2006b) Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol 7(5):937–952.  https://doi.org/10.1175/jhm538.1
  50. 50.
    Niu GY, Yang ZL, Dickinson RE, Gulden LE, Su H (2007) Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. J Geophys Res Atmos 112(D7).  https://doi.org/10.1029/2006jd007522
  51. 51.
    Niu GY et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res Atmos 116.  https://doi.org/10.1029/2010jd015139
  52. 52.
    Njoku EG (1977) Theory for passive microwave remote-sensing of near-surface soil-moisture. J Geophys Res 82(20):3108–3118.  https://doi.org/10.1029/Jb082i020p03108CrossRefGoogle Scholar
  53. 53.
    Palaciosvelez OL, Cuevasrenaud B (1986) Automated river-course, ridge and basin delineation from digital elevation data. J Hydrol 86(3–4):299–314.  https://doi.org/10.1016/0022-1694(86)90169-1CrossRefGoogle Scholar
  54. 54.
    Pedinotti V, Boone A, Decharme B, Cretaux JF, Mognard N, Panthou G, Papa F, Tanimoun BA (2012) Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets. Hydrol Earth Syst Sci 16(6):1745–1773.  https://doi.org/10.5194/hess-16-1745-2012
  55. 55.
    Price JC (1977) Thermal inertia mapping-new view of earth. J Geophys Res 82(18):2582–2590.  https://doi.org/10.1029/Jc082i018p02582 Ocean AtmosphereCrossRefGoogle Scholar
  56. 56.
    Ramillien G, Frappart F, Cazenave A, Güntner A (2005) Time variations of the land water storage from an inversion of 2 years of GRACE geoids. Earth Planet Sci. Lett 235, 283–301.Google Scholar
  57. 57.
    Rango A, Salomonson VV (1974) regional flood mapping from space. Water Resour Res 10(3):473–484.  https://doi.org/10.1029/Wr010i003p00473CrossRefGoogle Scholar
  58. 58.
    Reager JT, Thomas AC, Sproles EA, Rodell M, Beaudoing HK, Li BL, Famiglietti JS (2015) Assimilation of GRACE terrestrial water storage observations into a land surface model for the assessment of regional flood potential. Remote Sens 7(11):14663–14679.  https://doi.org/10.3390/rs71114663 BaselCrossRefGoogle Scholar
  59. 59.
    Rodell M, McWilliams EB, Famiglietti JS, Beaudoing HK, Nigro J (2011) Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol Process 25(26):4082–4092.  https://doi.org/10.1002/hyp.8369CrossRefGoogle Scholar
  60. 60.
    Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004a) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31(20).  https://doi.org/10.1029/2004gl020873
  61. 61.
    Rodell M et al (2004b) The global land data assimilation system. B Am Meteorol Soc 85(3):381–394.  https://doi.org/10.1175/bams-85-3-381
  62. 62.
    Rosenberg EA, Clark EA, Steinemann AC, Lettenmaier DP (2013) On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin. Hydrol Earth Syst Sci 17(4):1475–1491.  https://doi.org/10.5194/hess-17-1475-2013
  63. 63.
    Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res Solid Earth 102(B5):10039–10054.  https://doi.org/10.1029/96jb03223CrossRefGoogle Scholar
  64. 64.
    Scanlon BR, Faunt CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012a) Groundwater depletion and sustainability of irrigation in the US high plains and central valley. P Natl Acad Sci USA 109(24):9320–9325.  https://doi.org/10.1073/pnas.1200311109
  65. 65.
    Scanlon BR, Longuevergne L, Long D (2012b) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48.  https://doi.org/10.1029/2011wr011312
  66. 66.
    Schumacher M, Kusche J, Doll P (2016) A systematic impact assessment of GRACE error correlation on data assimilation in hydrological models. J Geodesy 90(6):537–559.  https://doi.org/10.1007/s00190-016-0892-yCrossRefGoogle Scholar
  67. 67.
    Seo KW, Wilson CR (2005) Simulated estimation of hydrological loads from GRACE. J Geodesy 78(7–8):442–456.  https://doi.org/10.1007/s00190-004-0410-5CrossRefGoogle Scholar
  68. 68.
    Shamsudduha M, Taylor RG, Longuevergne L (2012) Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal basin. Water Resour Res 48.  https://doi.org/10.1029/2011wr010993
  69. 69.
    Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7(4):270–292.  https://doi.org/10.1061/(Asce)1084-0699(2002)7;4(270)CrossRefGoogle Scholar
  70. 70.
    Sneeuw N, Lorenz C, Devaraju B, Tourian MJ, Riegger J, Kunstmann H, Bardossy A (2014) Estimating runoff using hydro-geodetic approaches. Surv Geophys 35(6):1333–1359.  https://doi.org/10.1007/s10712-014-9300-4CrossRefGoogle Scholar
  71. 71.
    Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment-Part II: model application. J Am Water Resour Assoc 34(1):91–101.  https://doi.org/10.1111/j.1752-1688.1998.tb05962.xCrossRefGoogle Scholar
  72. 72.
    Swenson SC, Lawrence DM (2015) A GRACE-based assessment of interannual groundwater dynamics in the community land model. Water Resour Res 51(11):8817–8833.  https://doi.org/10.1002/2015WR017582CrossRefGoogle Scholar
  73. 73.
    Swenson S, Wahr J (2002), Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res Solid Earth 107(B9).  https://doi.org/10.1029/2001jb000576
  74. 74.
    Swenson S, Wahr J (2006a) Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. J Hydrometeorol 7(2):252–270.  https://doi.org/10.1175/jhm478.1
  75. 75.
    Swenson S, Wahr J (2006b) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8).  https://doi.org/10.1029/2005gl025285
  76. 76.
    Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39(8).  https://doi.org/10.1029/2002wr001808
  77. 77.
    Swenson SC (2017) GRACE monthly land water mass grids NETCDF release 5.0| PO.DAACGoogle Scholar
  78. 78.
    Syed TH, Webster PJ, Famiglietti JS (2014) Assessing variability of evapotranspiration over the Ganga river basin using water balance computations. Water Resour Res 50(3):2551–2565.  https://doi.org/10.1002/2013WR013518CrossRefGoogle Scholar
  79. 79.
    Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32(24).  https://doi.org/10.1029/2005gl024851
  80. 80.
    Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44(2).  https://doi.org/10.1029/2006wr005779
  81. 81.
    Tangdamrongsub N, Steele-Dunne SC, Gunter BC, Ditmar PG, Sutanudjaja EH, Sun Y, Xia T, Wang ZJ (2017) Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model. Hydrol Earth Syst Sci 21(4):2053–2074.  https://doi.org/10.5194/hess-21-2053-2017
  82. 82.
    Tangdamrongsub N, Steele-Dunne SC, Gunter BC, Ditmar PG, Weerts AH (2015) Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin. Hydrol Earth Syst Sci 19(4):2079–2100.  https://doi.org/10.5194/hess-19-2079-2015
  83. 83.
    Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9).  https://doi.org/10.1029/2004gl019920
  84. 84.
    Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41(5):1537–1545CrossRefGoogle Scholar
  85. 85.
    Tian SY, Tregoning P, Renzullo LJ, van Dijk AIJM, Walker JP, Pauwels VRN, Allgeyer S (2017) Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resour Res 53(3):1820–1840.  https://doi.org/10.1002/2016WR019641CrossRefGoogle Scholar
  86. 86.
    Vandegriend AA, Engman ET (1985) Partial area hydrology and remote-sensing. J Hydrol 81(3–4): 211–251.  https://doi.org/10.1016/0022-1694(85)90033-2
  87. 87.
    Vergnes JP, Decharme B (2012) A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges. Hydrol Earth Syst Sci 16(10):3889–3908.  https://doi.org/10.5194/hess-16-3889-2012
  88. 88.
    Voss KA, Famiglietti JS, Lo M, Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the middle east from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res 49(2):904–914CrossRefGoogle Scholar
  89. 89.
    Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229CrossRefGoogle Scholar
  90. 90.
    Wang W, Cui W, Wang XJ, Chen X (2016) Evaluation of GLDAS-1 and GLDAS-2 forcing data and noah model simulations over china at the monthly scale. J Hydrometeorol 17(11):2815–2833.  https://doi.org/10.1175/Jhm-D-15-0191.1CrossRefGoogle Scholar
  91. 91.
    Xia YL et al (2016) Basin-scale assessment of the land surface water budget in the national centers for environmental prediction operational and research NLDAS-2 systems. J Geophys Res Atmos 121(6):2750–2779.  https://doi.org/10.1002/2015JD023733CrossRefGoogle Scholar
  92. 92.
    Yang ZL et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins J Geophys Res Atmos 116.  https://doi.org/10.1029/2010jd015140
  93. 93.
    Yeh PJF, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42(12).  https://doi.org/10.1029/2006wr005374
  94. 94.
    Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River basin. J Hydrometeorol 9(3):535–548.  https://doi.org/10.1175/2007JHM951.1CrossRefGoogle Scholar
  95. 95.
    Zhang LJ, Dobslaw H, Stacke T, Guntner A, Dill R, Thomas M (2017) Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations. Hydrol Earth Syst Sci 21(2):821–837.  https://doi.org/10.5194/hess-21-821-2017
  96. 96.
    van Beek LPH, Wada Y, Bierkens MFP (2011) Global monthly water stress: 1. Water balance and water availability. Water Resour Res 47.  https://doi.org/10.1029/2010wr009791
  97. 97.
    van Dijk AIJM, Renzullo LJ, Rodell M (2011) Use of gravity recovery and climate experiment terrestrial water storage retrievals to evaluate model estimates by the Australian water resources assessment system. Water Resour Res 47.  https://doi.org/10.1029/2011wr010714

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of ScienceBengaluruIndia

Personalised recommendations