Skip to main content

Restricted Parameter Spaces

  • Chapter
  • First Online:
Shrinkage Estimation

Abstract

In this chapter, we will consider the problem of estimating a location vector which is constrained to lie in a convex subset of \(\mathbb {R}^P\). Estimators that are constrained to a set should be constrasted to the shrinkage estimators discussed in Sect.2.4.4 where one has “vague knowledge” that a location vector is in or near the specified set and consequently wishes to shrink toward the set but does not wish to restrict the estimator to lie in the set. Much of the chapter is devoted to one of two types of constraint sets, balls, and polyhedral cones. However, Sect.7.2 is devoted to general convex constraint sets and more particularly to a striking result of Hartigan (2004) which shows that in the normal case, the Bayes estimator of the mean with respect to the uniform prior over any convex set , \(\mathcal {C}\), dominates X for all \(\theta \in \mathcal {C}\) under the usual quadratic loss ∥δ − θ2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The risks of δ α and δ MLE cannot match either, since a linear combination of these two distinct estimators would improve on δ α.

References

  • Berry C (1990) Minimax estimation of a bounded normal mean vector. J Multivar Anal 35:130–139

    Article  MathSciNet  Google Scholar 

  • Bickel PJ (1981) Minimax estimation of the mean of a normal distribution when the parameter space is restricted. Ann Stat 9(6):1301–1309

    Article  MathSciNet  Google Scholar 

  • Brown LD, Johnstone I, MacGibbon KB (1981) Variation diminishing transformations: a direct approach to total positivity and its statistical applications. J Am Stat Assoc 76:824–832

    Article  MathSciNet  Google Scholar 

  • Casella G, Strawderman WE (1981) Estimating a bounded normal mean. Ann Stat 9:870–878

    Article  MathSciNet  Google Scholar 

  • Donoho DL, Liu RC, MacGibbon KB (1990) Minimax risk over hyperrectangles, and implications. Ann Stat 80(3):1416–1437

    Article  MathSciNet  Google Scholar 

  • Fourdrinier D, Marchand E (2010) On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means. J Multivar Anal 101:1390–1399

    Article  MathSciNet  Google Scholar 

  • Fourdrinier D, Strawderman, Wells MT (2006) Estimation of a location parameter with restrictions or “vague information” for spherically symmetric distributions. Ann Inst Stat Math 58:73–92

    Article  MathSciNet  Google Scholar 

  • Hartigan JA (2004) Uniform priors on convex sets improve risk. Stat Probab Lett 67:285–288

    Article  MathSciNet  Google Scholar 

  • Isawa M, Moritani Y (1997) A note on the admissibility of the maximum likelihood estimator for a bounded normal mean. Stat Probab Lett 32:99–105

    Article  MathSciNet  Google Scholar 

  • Johnstone IM, MacGibbon KB (1992) Minimax estimation of a constrained Poisson vector. Ann Stat 20:807–831

    Article  MathSciNet  Google Scholar 

  • Katz MW (1961) Admissible and minimax estimates of parameters in truncated spaces. Ann Math Stat 32(1):136–142

    Article  MathSciNet  Google Scholar 

  • Kucerovsky D, Marchand E, Payandeh AT, Strawderman WE (2009) On the bayesianity of maximum likelihood estimators of restricted location parameters under absolute value error loss. Stat Decis Int Math J Stoch Methods Model 27:145–168

    MathSciNet  MATH  Google Scholar 

  • Levit BY (1981) On asymptotic minimax estimates of the second order. Theory Probab Its Appl 25(3):552–568

    Article  Google Scholar 

  • Marchand É, Perron F (2001) Improving on the MLE of a bounded normal mean. Ann Stat 29(4):1078–1093

    Article  MathSciNet  Google Scholar 

  • Marchand É, Perron F (2002) On the minimax estimator of a bounded normal mean. Stat Probab Lett 58:327–333

    Article  MathSciNet  Google Scholar 

  • Marchand É, Perron F (2005) Improving on the MLE of a bounded location parameter for spherical distributions. J Multivar Anal 92(2):227–238

    Article  MathSciNet  Google Scholar 

  • Marchand É, Strawderman WE (2004) Estimation in restricted parameter spaces: a review. In: DasGupta A (ed) A Festschrift for Herman Rubin. Lecture notes–monograph series, vol 45. Institute of Mathematical Statistics, Beachwood, pp 21–44

    Google Scholar 

  • Robertson T, Wright FT, Dykstra RL (1988) Order restricted statistical inference. Wiley, New York

    MATH  Google Scholar 

  • Sengupta D, Sen PK (1991) Shrinkage estimation in a restricted parameter space. Sankhyā 53:389–411

    MathSciNet  MATH  Google Scholar 

  • Stoer J, Witzgall C (1970) Convexity and optimization in finite dimensions I, Die Grundlehren der mathematischen Wissenschaften, vol 163. Springer, Berlin

    Book  Google Scholar 

  • van Eeden C (2006) Restricted parameter space estimation problems: admissibility and minimaxity properties. Lecture notes in statistics, Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fourdrinier, D., Strawderman, W.E., Wells, M.T. (2018). Restricted Parameter Spaces. In: Shrinkage Estimation. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-02185-6_7

Download citation

Publish with us

Policies and ethics