Skip to main content

Preliminary of Modeling Malicious Attack Propagation

  • Chapter
  • First Online:
  • 574 Accesses

Part of the book series: Advances in Information Security ((ADIS,volume 73))

Abstract

Graphs are usually used to represent networks in different fields such as computer science, biology, and sociology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale complexity in networks. Nature, 466(7307):761–764, 2010.

    Article  Google Scholar 

  2. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern physics, 74(1):47, 2002.

    Article  MathSciNet  Google Scholar 

  3. R. M. Anderson, R. M. May, and B. Anderson. Infectious diseases of humans: dynamics and control, volume 28. Wiley Online Library, 1992.

    Google Scholar 

  4. N. T. Bailey et al. The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE., 1975.

    Google Scholar 

  5. A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999.

    Article  MathSciNet  Google Scholar 

  6. P. Bonacich. Power and centrality: A family of measures. American journal of sociology, pages 1170–1182, 1987.

    Article  Google Scholar 

  7. K. L. Cooke and P. Van Den Driessche. Analysis of an seirs epidemic model with two delays. Journal of Mathematical Biology, 35(2):240–260, 1996.

    Article  MathSciNet  Google Scholar 

  8. D. J. Daley and D. G. Kendall. Epidemics and rumours. 1964.

    Article  Google Scholar 

  9. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure of growing networks with preferential linking. Physical review letters, 85(21):4633, 2000.

    Article  Google Scholar 

  10. P. ERDdS and A. R&WI. On random graphs i. Publ. Math. Debrecen, 6:290–297, 1959.

    Google Scholar 

  11. S. Fortunato. Community detection in graphs. Physics reports, 486(3):75–174, 2010.

    Article  MathSciNet  Google Scholar 

  12. S. Fortunato, A. Flammini, and F. Menczer. Scale-free network growth by ranking. Physical review letters, 96(21):218701, 2006.

    Google Scholar 

  13. L. C. Freeman. Centrality in social networks conceptual clarification. Social networks, 1(3):215–239, 1978.

    Article  Google Scholar 

  14. L. C. Freeman. Centrality in social networks: conceptual clarification. Social Networks, 1:215–239, 1979.

    Article  Google Scholar 

  15. M. Girvan and M. E. Newman. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826, 2002.

    Article  MathSciNet  Google Scholar 

  16. W. Goffman and V. Newill. Generalization of epidemic theory. Nature, 204(4955):225–228, 1964.

    Article  Google Scholar 

  17. H. W. Hethcote. The mathematics of infectious diseases. SIAM review, 42(4):599–653, 2000.

    Article  MathSciNet  Google Scholar 

  18. P. W. Holland and S. Leinhardt. Transitivity in structural models of small groups. Comparative group studies, 2(2):107–124, 1971.

    Article  Google Scholar 

  19. M. J. Keeling and K. T. Eames. Networks and epidemic models. Journal of the Royal Society Interface, 2(4):295–307, 2005.

    Article  Google Scholar 

  20. M. J. Keeling and P. Rohani. Modeling infectious diseases in humans and animals. Princeton University Press, 2008.

    Google Scholar 

  21. J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The web as a graph: measurements, models, and methods. In International Computing and Combinatorics Conference, pages 1–17. Springer, 1999.

    Google Scholar 

  22. D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski. Centrality indices. In Network analysis, pages 16–61. Springer, 2005.

    Google Scholar 

  23. P. L. Krapivsky and S. Redner. Organization of growing random networks. Physical Review E, 63(6):066123, 2001.

    Google Scholar 

  24. R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic models for the web graph. In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 57–65. IEEE, 2000.

    Google Scholar 

  25. Y. Y. Liu, J. J. Slotine, and A. laszlo Barabasi. Controllability of complex networks. Nature, 473:167–173, 2011.

    Article  Google Scholar 

  26. R. D. Luce and A. D. Perry. A method of matrix analysis of group structure. Psychometrika, 14(2):95–116, 1949.

    Article  MathSciNet  Google Scholar 

  27. S. Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

    Google Scholar 

  28. M. E. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256, 2003.

    Article  MathSciNet  Google Scholar 

  29. M. E. Newman. The mathematics of networks. The new palgrave encyclopedia of economics, 2:1–12, 2008.

    Google Scholar 

  30. M. E. Newman and J. Park. Why social networks are different from other types of networks. Physical Review E, 68(3):036122, 2003.

    Google Scholar 

  31. M. E. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks. Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572, 2002.

    Article  Google Scholar 

  32. M. E. J. Newman. Networks: An Introduction, chapter 17 Epidemics on networks, pages 700–750. Oxford University Press, 2010.

    Google Scholar 

  33. A. Rapoport. Spread of information through a population with socio-structural bias: I. assumption of transitivity. The bulletin of mathematical biophysics, 15(4):523–533, 1953.

    Article  MathSciNet  Google Scholar 

  34. M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123, 2008.

    Article  Google Scholar 

  35. L.-P. Song, Z. Jin, and G.-Q. Sun. Modeling and analyzing of botnet interactions. Physica A: Statistical Mechanics and its Applications, 390(2):347–358, 2011.

    Article  Google Scholar 

  36. Y. Wang, S. Wen, Y. Xiang, and W. Zhou. Modeling the propagation of worms in networks: A survey. Communications Surveys Tutorials, IEEE, PP(99):1–19, 2013.

    Google Scholar 

  37. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. nature, 393(6684):440–442, 1998.

    Article  Google Scholar 

  38. Y. Xiang, X. Fan, and W. T. Zhu. Propagation of active worms: a survey. International journal of computer systems science & engineering, 24(3):157–172, 2009.

    Google Scholar 

  39. Y. Yao, X. Luo, F. Gao, and S. Ai. Research of a potential worm propagation model based on pure p2p principle. In Communication Technology, 2006. ICCT’06. International Conference on, pages 1–4. IEEE, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, J., Wen, S., Yu, S., Liu, B., Xiang, Y., Zhou, W. (2019). Preliminary of Modeling Malicious Attack Propagation. In: Malicious Attack Propagation and Source Identification. Advances in Information Security, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-02179-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02179-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02178-8

  • Online ISBN: 978-3-030-02179-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics