Skip to main content

Characterization Techniques

  • Chapter
  • First Online:
Semiconductors

Abstract

The present chapter introduces the most frequently used techniques to characterize the traditional materials, thin films, or semiconductors at the nanoscale. These techniques can be divided into electrical, optical, structural, and compositional characterization methods. The electrical analysis can be performed by applying either direct or alternating current. Key parameters to determine are carrier mobility and concentration, resistivity/conductivity, type of conductivity, current–voltage dependence, among others. Optical characterization is performed using UV-visible absorption spectroscopy and its importance relies in that it can bring to light features not revealed by other analysis such as bandgap, thickness of thin films, to name some. Since the structure is related to its physical properties and its performance during application, it is mandatory to determine its characteristics using direct or indirect methods such as X-ray diffractometry, electron diffractometry, scanning electron microscopy, scanning tunneling microscopy, transmission electron microscopy, and atomic force microscopy. X-ray photoelectron spectroscopy is a relatively simple surface analysis technique that can not only identify the type of elements in the material but also provide information related to the chemical states of those elements. In recent years, it has been successfully used in the study of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valdes LB (1954) Resistivity measurements on germanium for transistors. Proc IRE 42(2):420–427. https://doi.org/10.1109/JRPROC.1954.274680

    Article  Google Scholar 

  2. Smits FM (1958) Measurement of sheet resistivities with the four-point probe. Bell Syst Tech J 37(3):711–718. https://doi.org/10.1002/j.1538-7305.1958.tb03883.x

    Article  Google Scholar 

  3. García-Ramírez MA, Ghiass AM, Moktadir Z, Tsuchiya Y, Mizuta H (2014) Fabrication and characterisation of a double-clamped beam structure as a control gate for a high-speed non-volatile memory device. Microelectron Eng 114(Supplement C):22–25. https://doi.org/10.1016/j.mee.2013.09.002

    Article  CAS  Google Scholar 

  4. López-Albarrán P, Navarro-Santos P, Garcia-Ramirez MA, Ricardo-Chávez JL (2015) Dibenzothiophene adsorption at boron doped carbon nanoribbons studied within density functional theory. J Appl Phys 117(23):234301. https://doi.org/10.1063/1.4922452

    Article  CAS  Google Scholar 

  5. Fox M (2010) Optical properties of solids, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  6. Ornelas-Acosta RE, Shaji S, Avellaneda D, Castillo GA, Das Roy TK, Krishnan B (2015) Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater Res Bull 61:215–225. https://doi.org/10.1016/j.materresbull.2014.10.027

    Article  CAS  Google Scholar 

  7. Mendivil MI, García LV, Krishnan B, Avellaneda D, Martinez JA, Shaji S (2015) CuInGaSe2 nanoparticles by pulsed laser ablation in liquid medium. Mater Res Bull 72:106–115. https://doi.org/10.1016/j.materresbull.2015.07.038

    Article  CAS  Google Scholar 

  8. Tiwald TE, Thompson DW, Woollam JA, Pepper SV (1998) Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell. Thin Solid Films 313–314(313):718–721. https://doi.org/10.1016/S0040-6090(97)00984-X

    Article  Google Scholar 

  9. Yang C, Williams B, Hulet M, Tiwald T, Miles R, Samuels A (eds) (2011) Optical constants of neat liquid-chemical warfare agents and related materials measured by infrared spectroscopic ellipsometry. Proc SPIE

    Google Scholar 

  10. Stenzel O (1996) Das Dünnschichtspektrum. Akademie-Verlag, Berlin, p 35

    Google Scholar 

  11. Serway RA (1998) Principles of physics. Saunders College Pub., Fort Worth. ISBN 0-03-020457-71998

    Google Scholar 

  12. Griffiths DJ (1999) Electrodynamics. Introduction to electrodynamics, 3rd edn. Prentice Hall, Upper Saddle River, NJ, pp 301–306

    Google Scholar 

  13. Giancoli DC (2005) Physics: principles with applications. Pearson Education, Upper Saddle River

    Google Scholar 

  14. Elert G (2011) Resistivity of steel. The physics factbook

    Google Scholar 

  15. Ohring M (1995) Engineering materials science. Academic Press, London

    Book  Google Scholar 

  16. http://www.icdd.com

  17. Acuña D, Krishnan B, Shaji S, Sepulveda S, Menchaca JL (2016) Growth and properties of lead iodide thin films by spin coating. Bull Mater Sci 39(6):1453–1460. https://doi.org/10.1007/s12034-016-1282-z

    Article  CAS  Google Scholar 

  18. Garza D, Grisel García G, Mendivil Palma MI, Avellaneda D, Castillo GA, Das Roy TK et al (2013) Nanoparticles of antimony sulfide by pulsed laser ablation in liquid media. J Mater Sci 48(18):6445–6453. https://doi.org/10.1007/s10853-013-7446-y

    Article  CAS  Google Scholar 

  19. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Pearson, Essex

    Google Scholar 

  20. Krishnan B, Arato A, Cardenas E, Roy TKD, Castillo GA (2008) On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films. Appl Surf Sci 254(10):3200–3206. https://doi.org/10.1016/j.apsusc.2007.10.098

    Article  CAS  Google Scholar 

  21. Haugstad G (2012) Atomic force microscopy, understanding basic modes and advanced applications. Wiley, Hoboken

    Book  Google Scholar 

  22. Garcia LV, Loredo SL, Shaji S, Aguilar Martinez JA, Avellaneda DA, Das Roy TK et al (2016) Structure and properties of CdS thin films prepared by pulsed laser assisted chemical bath deposition. Mater Res Bull 83:459–467. https://doi.org/10.1016/j.materresbull.2016.06.027

    Article  CAS  Google Scholar 

  23. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E et al (2003) Scanning electron microscopy and x-ray microanalysis, 3rd edn. Springer, US

    Book  Google Scholar 

  24. http://www.leica-microsystems.com/science-lab/brief-introduction-to-coating-technology-for-electron-microscopy/

  25. Mendivil MI, Krishnan B, Sanchez FA, Martinez S, Aguilar-Martinez JA, Castillo GA et al (2013) Synthesis of silver nanoparticles and antimony oxide nanocrystals by pulsed laser ablation in liquid media. Appl Phys A 110(4):809–816. https://doi.org/10.1007/s00339-012-7157-2

    Article  CAS  Google Scholar 

  26. Johny J, Sepulveda-Guzman S, Krishnan B, Avellaneda DA, Aguilar Martinez JA, Shaji S (2017) Synthesis and properties of tin sulfide thin films from nanocolloids prepared by pulsed laser ablation in liquid. ChemPhysChem https://doi.org/10.1002/cphc.201601186

    Article  CAS  Google Scholar 

  27. Bissig B, Lingg M, Guerra-Nunez C, Carron R, La Mattina F, Utke I et al. On a better estimate of the charge collection function in CdTe solar cells: Al2O3 enhanced electron beam induced current measurements. Thin Solid Films. http://dx.doi.org/10.1016/j.tsf.2016.08.012

  28. http://rruff.info/

  29. Shaji S, Garcia LV, Loredo SL, Krishnan B, Aguilar Martinez JA, Das Roy TK et al (2017) Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl Surf Sci 393:369–376. https://doi.org/10.1016/j.apsusc.2016.10.051

    Article  CAS  Google Scholar 

  30. Liu Y, Eddie Chua KT, Sum TC, Gan CK (2014) First-principles study of the lattice dynamics of Sb2S3. Phys Chem Chem Phys 16(1):345–350. https://doi.org/10.1039/c3cp53879f

    Article  CAS  Google Scholar 

  31. Pvd Heide (2011) X-ray photoelectron spectroscopy: an introduction to principles and practices. Wiley, Hoboken

    Google Scholar 

  32. http://xpssimplified.com/elements/cerium.php

  33. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer Corporation, Eden Prairie, Minnesota

    Google Scholar 

  34. Guillen GG, Mendivil Palma MI, Krishnan B, Avellaneda Avellaneda D, Shaji S (2016) Tin sulfide nanoparticles by pulsed laser ablation in liquid. J Mater Sci: Mater Electron 27(7):6859–6871. https://doi.org/10.1007/s10854-016-4639-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué A. Aguilar-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernández Hernández, M.B., García-Ramírez, M.A., Dan, Y., Aguilar-Martínez, J.A., Krishnan, B., Shaji, S. (2019). Characterization Techniques. In: Pech-Canul, M., Ravindra, N. (eds) Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-030-02171-9_3

Download citation

Publish with us

Policies and ethics