Skip to main content

Background

  • Chapter
  • First Online:
Hybrid Massive MIMO Precoding in Cloud-RAN

Part of the book series: Wireless Networks ((WN))

  • 337 Accesses

Abstract

From a signal processing point of view, the novel aspect of hybrid precoding/combining in comparison with the conventional fully digital precoding/combining lies in the introduction of the precoding/combining stage in the RF domain as a result of driving a large-scale antenna array by a limited number of RF chains. By treating the cascade of the RF stage and multiple-input multiple-output (MIMO) channel as the effective channel, the system model of massive MIMO is analogous to the conventional counterpart, where various solution techniques have been proposed for the single-user and multi-user scenarios. On the other hand, problem formulation and optimization of the RF component depend on the choice of the baseband component in a joint RF-baseband design. Therefore, before we embark on the study of hybrid precoding/combining design, we give a brief review of the related background and recent developments in this chapter, which serve as the basis for our proposed research in the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

    Article  MathSciNet  Google Scholar 

  2. H. Sampath, P. Stoica, and A. Paulraj, “Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion,” IEEE Trans. Commun., vol. 49, no. 12, pp. 2198–2206, Dec. 2001.

    Article  Google Scholar 

  3. A. Scaglione, P. Stoica, S. Barbarossa, G. B. Giannakis, and H. Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1051–1064, May 2002.

    Article  Google Scholar 

  4. D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2381–2401, Sep. 2003.

    Article  Google Scholar 

  5. Y. Jiang, J. Li, and W. W. Hager, “Joint transceiver design for MIMO communications using geometric mean decomposition,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3791–3803, Oct. 2005.

    Article  MathSciNet  Google Scholar 

  6. ——, “Uniform channel decomposition for MIMO communications,” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4283–4294, Nov. 2005.

    Article  MathSciNet  Google Scholar 

  7. H. Sun, H. Samra, Z. Ding, and J. Manton, “Constrained capacity of linear precoded ARQ in MIMO wireless systems,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process., Philadelphia, PA, USA, Mar. 2005.

    Google Scholar 

  8. H. Sun, J. H. Manton, and Z. Ding, “Progressive linear precoder optimization for MIMO packet retransmissions,” IEEE J. Sel. Areas Commun., vol. 24, no. 5, pp. 448–456, Mar. 2006.

    Google Scholar 

  9. H. Sun and Z. Ding, “Iterative transceiver design for MIMO ARQ retransmissions with decision feedback detection,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3405–3416, Jul. 2007.

    Article  MathSciNet  Google Scholar 

  10. H. Sun, Z. H. Shi, C. M. Zhao, J. H. Manton, and Z. Ding, “Progressive linear precoder optimization for MIMO packet retransmissions exploiting channel covariance information,” IEEE Trans. Commun., vol. 56, no. 5, pp. 818–827, May 2008.

    Article  Google Scholar 

  11. X. Liang, C. M. Zhao, and Z. Ding, “Sequential linear MIMO precoder optimization for hybrid ARQ retransmission of QAM signals,” IEEE Commun. Lett., vol. 15, no. 9, pp. 913–915, Sep. 2011.

    Article  Google Scholar 

  12. X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091–4103, Nov. 2005.

    Article  MathSciNet  Google Scholar 

  13. P. Sudarshan, N. B. Mehta, A. F. Molisch, and J. Zhang, “Channel statistics-based RF pre-processing with antenna selection,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3501–3511, Dec. 2006.

    Article  Google Scholar 

  14. A. F. Molisch and X. Zhang, “FFT-based hybrid antenna selection schemes for spatially correlated MIMO channels,” IEEE Commun. Lett., vol. 8, no. 1, pp. 36–38, Jan. 2004.

    Article  Google Scholar 

  15. O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

    Article  Google Scholar 

  16. A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.

    Article  Google Scholar 

  17. X. Yu, J.-C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 485–500, Apr. 2016.

    Article  Google Scholar 

  18. R. Mai, D. H. N. Nguyen, and T. Le-Ngoc, “MMSE hybrid precoder design for millimeter-wave massive MIMO systems,” in Proc. IEEE Wireless Commun. Netw. Conf., Doha, Qatar, Apr. 2016.

    Google Scholar 

  19. F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 501–513, Apr. 2016.

    Article  Google Scholar 

  20. A. Alkhateeb and R. W. Heath, “Frequency selective hybrid precoding for limited feedback millimeter wave systems,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1801–1818, May 2016.

    Article  Google Scholar 

  21. M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, no. 3, pp. 439–441, May 1983.

    Article  MathSciNet  Google Scholar 

  22. C. B. Peel, “On ‘dirty-paper coding’,” IEEE Signal Process. Mag., vol. 20, no. 3, pp. 112–113, May 2003.

    Article  MathSciNet  Google Scholar 

  23. T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.

    Article  Google Scholar 

  24. J. Q. Wang, D. J. Love, and M. D. Zoltowski, “User selection with zero-forcing beamforming achieves the asymptotically optimal sum rate,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3713–3726, Aug. 2008.

    Article  MathSciNet  Google Scholar 

  25. C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication - Part I: Channel inversion and regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.

    Article  Google Scholar 

  26. M. Joham, W. Utschick, and J. A. Nossek, “Linear transmit processing in MIMO communications systems,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700–2712, Aug. 2005.

    Article  MathSciNet  Google Scholar 

  27. B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst, “A vector-perturbation technique for near-capacity multiantenna multiuser communication - Part II: Perturbation,” IEEE Trans. Commun., vol. 53, no. 3, pp. 537–544, Mar. 2005.

    Article  Google Scholar 

  28. D. A. Schmidt, M. Joham, and W. Utschick, “Minimum mean square error vector precoding,” European Trans. Telecommun., vol. 19, no. 3, pp. 219–231, Apr. 2008.

    Article  Google Scholar 

  29. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, ser. Grundlehren der mathematischen Wissenschaften. New York, NY, USA: Springer-Verlag, 2013.

    Google Scholar 

  30. R. R. Muller, D. N. Guo, and A. L. Moustakas, “Vector precoding for wireless MIMO systems and its replica analysis,” IEEE J. Sel. Areas Commun., vol. 26, no. 3, pp. 530–540, Apr. 2008.

    Article  Google Scholar 

  31. D. J. Ryan, I. B. Collings, I. V. L. Clarkson, and R. W. Heath, “Performance of vector perturbation multiuser MIMO systems with limited feedback,” IEEE Trans. Commun., vol. 57, no. 9, pp. 2633–2644, Sep. 2009.

    Article  Google Scholar 

  32. J. Choi, “Multiuser precoding with limited cooperation for large-scale MIMO multicell downlink,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1295–1308, Mar. 2015.

    Article  Google Scholar 

  33. M. Mazrouei-Sebdani and W. A. Krzymień, “On MMSE vector-perturbation precoding for MIMO broadcast channels with per-antenna-group power constraints,” IEEE Trans. Signal Process., vol. 61, no. 15, pp. 3745–3751, Aug. 2013.

    Article  MathSciNet  Google Scholar 

  34. C. B. Chae, S. H. Kim, and R. W. Heath, “Block diagonalized vector perturbation for multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4051–4057, Nov. 2008.

    Article  Google Scholar 

  35. J. Park, B. Lee, and B. Shim, “A MMSE vector precoding with block diagonalization for multiuser MIMO downlink,” IEEE Trans. Commun., vol. 60, no. 2, pp. 569–577, Feb. 2012.

    Article  Google Scholar 

  36. F. Liu, L. G. Jiang, and C. He, “Advanced joint transceiver design for block-diagonal geometric-mean-decomposition-based multiuser MIMO systems,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 692–703, Feb. 2010.

    Article  Google Scholar 

  37. W. Yao, S. Chen, and L. Hanzo, “A transceiver design based on uniform channel decomposition and MBER vector perturbation,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 3153–3159, Jul. 2010.

    Article  Google Scholar 

  38. C. B. Chae, S. H. Kim, and R. W. Heath, “Network coordinated beamforming for cell-boundary users: Linear and nonlinear approaches,” IEEE J. Sel. Topics Signal Process., vol. 3, no. 6, pp. 1094–1105, Dec. 2009.

    Article  Google Scholar 

  39. S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.

    Book  Google Scholar 

  40. L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,” vol. 3, no. 6, pp. 653–656, Oct. 2014.

    Google Scholar 

  41. W. H. Ni and X. D. Dong, “Hybrid block diagonalization for massive multiuser MIMO systems,” IEEE Trans. Commun., vol. 64, no. 1, pp. 201–211, Jan. 2016.

    Article  MathSciNet  Google Scholar 

  42. J. Choi, D. J. Love, and P. Bidigare, “Downlink training techniques for FDD massive MIMO systems: Open-loop and closed-loop training with memory,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 802–814, Oct. 2014.

    Article  Google Scholar 

  43. A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and multiplexing - The large-scale array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.

    Article  MathSciNet  Google Scholar 

  44. A. Adhikary, E. Al Safadi, M. K. Samimi, R. Wang, G. Caire, T. S. Rappaport, and A. F. Molisch, “Joint spatial division and multiplexing for mm-wave channels,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1239–1255, Jun. 2014.

    Article  Google Scholar 

  45. A. Liu and V. K. N. Lau, “Hierarchical interference mitigation for massive MIMO cellular networks,” IEEE Trans. Signal Process., vol. 62, no. 18, pp. 4786–4797, Sep. 2014.

    Article  MathSciNet  Google Scholar 

  46. ——, “Phase only RF precoding for massive MIMO systems with limited RF chains,” IEEE Trans. Signal Process., vol. 62, no. 17, pp. 4505–4515, Sep. 2014.

    Article  MathSciNet  Google Scholar 

  47. ——, “Two-stage subspace constrained precoding in massive MIMO cellular systems,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3271–3279, Jun. 2015.

    Article  Google Scholar 

  48. H. Shin and J. H. Lee, “Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2636–2647, Oct. 2003.

    Article  MathSciNet  Google Scholar 

  49. M. Zhang, P. J. Smith, and M. Shafi, “An extended one-ring MIMO channel model,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2759–2764, Aug. 2007.

    Article  Google Scholar 

  50. D. Kim, G. Lee, and Y. Sung, “Two-stage beamformer design for massive MIMO downlink by trace quotient formulation,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2200–2211, Jun. 2015.

    Article  Google Scholar 

  51. A. Liu and V. K. N. Lau, “Two-stage constant-envelope precoding for low-cost massive MIMO systems,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 485–494, Jan. 2016.

    Article  MathSciNet  Google Scholar 

  52. J. T. Chen and V. K. N. Lau, “Two-tier precoding for FDD multi-cell massive MIMO time-varying interference networks,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1230–1238, Jun. 2014.

    Article  Google Scholar 

  53. Y. Xu, G. Yue, and S. Mao, “User grouping for massive MIMO in FDD systems: New design methods and analysis,” IEEE Access, vol. 2, pp. 947–959, 2014.

    Article  Google Scholar 

  54. J. Nam, A. Adhikary, J.-Y. Ahn, and G. Caire, “Joint spatial division and multiplexing: Opportunistic beamforming, user grouping and simplified downlink scheduling,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 876–890, Oct. 2014.

    Article  Google Scholar 

  55. J. Nam, Y. J. Ko, and J. Ha, “User grouping of two-stage MU-MIMO precoding for clustered user geometry,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1458–1461, Aug. 2015.

    Article  Google Scholar 

  56. S. P. Herath, D. H. N. Nguyen, and T. Le-Ngoc, “Vector perturbation precoding for multi-user CoMP downlink transmission,” IEEE Access, vol. 3, pp. 1491–1502, Sep. 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le-Ngoc, T., Mai, R. (2019). Background. In: Hybrid Massive MIMO Precoding in Cloud-RAN. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-02158-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02158-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02157-3

  • Online ISBN: 978-3-030-02158-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics