Skip to main content

Axiomatizing Discrete Spatial Relations

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11194))

  • 398 Accesses

Abstract

Qualitative spatial relations are used in artificial intelligence to model commonsense notions such as regions of space overlapping, touching only at their boundaries, or being separate. In this paper we extend earlier work on qualitative relations in discrete space by presenting a bi-intuitionistic modal logic with universal modalities, called UBiSKt. This logic has a semantics in which formulae are interpreted as subgraphs. We show how a variety of qualitative spatial relations can be defined in UBiSKt. We make essential use of a sound and complete axiomatisation of the logic and an implementation of a tableau based theorem prover to establish novel properties of these spatial relations. We also explore the role of UBiSKt in expressing spatial relations at more than one level of detail. The features of the logic allow it to represent how a subgraph at a detailed level is approximated at a coarser level.

K. Sano—Partially supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K21025 and Grant-in-Aid for Scientific Research (B) Grant Number 17H02258, and JSPS Core-to-Core Program (A. Advanced Research Networks).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  2. Bloch, I.: Modal logics based on mathematical morphology for qualitative spatial reasoning. J. Appl. Non-Cl. Log. 12(3–4), 399–423 (2002). https://doi.org/10.3166/jancl.12.399-423

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloch, I.: Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. Int. J. Approx. Reason. 41(2), 77–95 (2006)

    Article  MathSciNet  Google Scholar 

  4. Chen, J., Cohn, A.G., Liu, D., Wang, S., Ouyang, J., Yu, Q.: A survey of qualitative spatial representations. Knowl. Eng. Rev. 30(1), 106–136 (2015)

    Article  Google Scholar 

  5. Cohn, A.G., Varzi, A.C.: Mereotopological connection. J. Philos. Log. 32, 357–390 (2003)

    Article  MathSciNet  Google Scholar 

  6. Cousty, J., Najman, L., Dias, F., Serra, J.: Morphological filtering on graphs. Comput. Vis. Image Underst. 117, 370–385 (2013)

    Article  Google Scholar 

  7. Egenhofer, M.J., Herring, J.: Categorizing binary topological relations between regions, lines, and points in geographic databases. Department of Surveying Engineering, University of Maine, Orono, ME, vol. 9(94-1), p. 76 (1991)

    Google Scholar 

  8. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48384-5_17

    Chapter  Google Scholar 

  9. Galton, A.: Discrete mereotopology. In: Calosi, C., Graziani, P. (eds.) Mereology and the Sciences. SL, vol. 371, pp. 293–321. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05356-1_11

    Chapter  Google Scholar 

  10. Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Log. Comput. 2(1), 5–30 (1992). https://doi.org/10.1093/logcom/2.1.5

    Article  MathSciNet  MATH  Google Scholar 

  11. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    Google Scholar 

  12. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. Wiley, Hoboken (2010)

    MATH  Google Scholar 

  13. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning. Proceedings of the Third International Conference (KR 1992), pp. 165–176. Morgan Kaufmann (1992)

    Google Scholar 

  14. Randell, D.A., Galton, A., Fouad, S., Mehanna, H., Landini, G.: Mereotopological correction of segmentation errors in histological imaging. J. Imaging 3(4), 63 (2017)

    Article  Google Scholar 

  15. Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621–630 (1979)

    Article  MathSciNet  Google Scholar 

  16. Sano, K., Stell, J.G.: Strong completeness and the finite model property for bi-intuitionistic stable tense logics. In: Electronic Proceedings in Theoretical Computer Science. Open Publishing Association (2016)

    Google Scholar 

  17. Sindoni, G., Sano, K., Stell, J.G.: Axiomatizing Discrete Spatial Relations (Extended Version with Omitted Proofs) (2018). https://doi.org/10.5518/427

  18. Sindoni, G., Stell, J.G.: The logic of discrete qualitative relations. In: COSIT 2017 Proceedings, vol. 86. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  19. Stell, J., Schmidt, R., Rydeheard, D.: A bi-intuitionistic modal logic: foundations and automation. J. Log. Algebr. Methods Program. 85(4), 500–519 (2016)

    Article  MathSciNet  Google Scholar 

  20. Stell, J.G.: Granular description of qualitative change. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 1111–1117 (2013)

    Google Scholar 

  21. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL2: towards a tableau prover generation platform. In: PAAR@ IJCAR, pp. 149–162 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Sindoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sindoni, G., Sano, K., Stell, J.G. (2018). Axiomatizing Discrete Spatial Relations. In: Desharnais, J., Guttmann, W., Joosten, S. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2018. Lecture Notes in Computer Science(), vol 11194. Springer, Cham. https://doi.org/10.1007/978-3-030-02149-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02149-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02148-1

  • Online ISBN: 978-3-030-02149-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics