Skip to main content

Distances, Norms and Error Propagation in Idempotent Semirings

  • Conference paper
  • First Online:
  • 407 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11194))

Abstract

Error propagation and perturbation theory are well-investigated areas of mathematics dealing with the influence of errors and perturbations of input quantities on output quantities. However, these methods are restricted to quantities relying on real numbers under traditional addition and multiplication. We aim to present first steps of an analogous theory on idempotent semirings, so we define distances and norms on idempotent semirings and matrices over them. These concepts are used to derive inequalities characterizing the influence of changes in the input quantities on the output quantities of some often used semiring expressions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based on Kleene Algebra in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 197–212. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_16

    Chapter  Google Scholar 

  2. Avrachenkov, K., Filar, J.A., Howlett, P.G.: Analytic Perturbation Theory and Its Applications. SIAM (2013)

    Google Scholar 

  3. Backhouse, R.C.: Regular algebra applied to language problems. J. Log. Algebr. Program. 66(2), 71–111 (2006)

    Article  MathSciNet  Google Scholar 

  4. Berghammer, R., Stucke, I., Winter, M.: Using relation-algebraic means and tool support for investigating and computing bipartitions. J. Log. Algebr. Meth. Program. 90, 102–124 (2017)

    Article  Google Scholar 

  5. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society (1967)

    Google Scholar 

  6. Brunet, P., Pous, D., Stucke, I.: Cardinalities of finite relations in Coq. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 466–474. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_29

    Chapter  Google Scholar 

  7. Courant, R., John, F.: Introduction to Calculus and Analysis I, 1st edn. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-58604-0

    Book  MATH  Google Scholar 

  8. Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: Kleene algebras and semimodules for energy problems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 102–117. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_9

    Chapter  MATH  Google Scholar 

  9. Ghose, A., Harvey, P.: Metric SCSPs: partial constraint satisfaction via semiring CSPs augmented with metrics. In: McKay, B., Slaney, J. (eds.) AI 2002. LNCS (LNAI), vol. 2557, pp. 443–454. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36187-1_39

    Chapter  Google Scholar 

  10. Glück, R.: Algebraic investigation of connected components. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 109–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57418-9_7

    Chapter  MATH  Google Scholar 

  11. Glück, R., Krebs, F.B.: Towards interactive verification of programmable logic controllers using Modal Kleene Algebra and KIV. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAMICS 2015. LNCS, vol. 9348, pp. 241–256. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24704-5_15

    Chapter  MATH  Google Scholar 

  12. Golan, J.S.: Semirings and their Applications, 1st edn. Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-015-9333-5

    Book  MATH  Google Scholar 

  13. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75450-5

    Book  MATH  Google Scholar 

  14. Guttmann, W.: Stone relation algebras. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 127–143. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57418-9_8

    Chapter  Google Scholar 

  15. Holmes, M.: Introduction to Perturbation Methods, 2nd edn. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5477-9

    Book  MATH  Google Scholar 

  16. Jackson, M., McKenzie, R.: Interpreting graph colorability in finite semigroups. IJAC 16(1), 119–140 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Jipsen, P., Rose, H.: Varieties of Lattices, 1st edn. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0090224

    Book  MATH  Google Scholar 

  18. Kahl, W.: Graph transformation with symbolic attributes via monadic coalgebra homomorphisms. In: ECEASST, p. 71 (2014)

    Google Scholar 

  19. Kawahara, Y., Furusawa, H.: An algebraic formalization of fuzzy relations. Fuzzy Sets Syst. 101(1), 125–135 (1999)

    Article  Google Scholar 

  20. Kawahara, Y.: On the cardinality of relations. In: RelMiCS, pp. 251–265 (2006)

    Google Scholar 

  21. Krivulin, N.: Complete solution of an optimization problem in tropical semifield. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 226–241. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57418-9_14

    Chapter  MATH  Google Scholar 

  22. Litak, T., Mikulás, S., Hidders, J.: Relational lattices. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp. 327–343. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06251-8_20

    Chapter  MATH  Google Scholar 

  23. Michels, G., Joosten, S., van der Woude, J., Joosten, S.: Ampersand - applying relation algebra in practice. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp. 280–293. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21070-9_21

    Chapter  MATH  Google Scholar 

  24. Oliveira, J.N.: A relation-algebraic approach to the “hoare logic” of functional dependencies. J. Log. Algebr. Meth. Program. 83(2), 249–262 (2014)

    Article  Google Scholar 

  25. Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for Computer Scientists. Springer, Heidelberg (1993). https://doi.org/10.1007/978-3-642-77968-8

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referees for helpful and enlightening remarks, especially to the fourth reviewer for his deep reflections about doing and selling science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Glück .

Editor information

Editors and Affiliations

A Deferred Proofs and Remarks

A Deferred Proofs and Remarks

Example 3.3 and Continuation. First we show additive subdistributivity of \({{\varvec{d}}}_{s}\) which means \(|\min \{x_1,x_2\}-\min \{y_1,y_2\}|\le \max \{|x_1-y_1|,|x_2-y_2|\}\). W.l.o.g. we assume \(x_1\le x_2\) and hence \(|\min \{x_1,x_2\}-\min \{y_1,y_2\}|=|x_1-\min \{y_1,y_2\}|\). Now we distinguish the following cases:

  1. 1.

    \(y_1\le y_2\): Then we have \(\min \{y_1,y_2\}=y_1\) and hence \(|\min \{x_1,x_2\}-\min \{y_1,y_2\}|=|x_1-y_1|\). Now the claim is obvious due to \(|x_1-y_1|\le \max \{|x_1-y_1|,|x_2-y_2|\}\).

  2. 2.

    \(y_2<y_1\): Then we have \(\min \{y_1,y_2\}=y_2\) and hence \(|\min \{x_1,x_2\}-\min \{y_1,y_2\}|=|x_1-y_2|\). We distinguish the following cases:

    1. (2a)

      \(y_2\le x_1\): By assumption we have \(x_1\le x_2\) and hence \(|x_1-y_2|\le |x_2-y_2|\). Together with \(|x_2-y_2|\le \max \{|x_1-y_1|,|x_2-y_2|\}\) we obtain the claim.

    2. (2b)

      \(y_2>x_1\): By assumption we have \(y_1>y_2\) and hence \(|x_1-y_2|<|x_1-y_1|\), and the claim follows analogously to above.

For multiplicative subdistributivity we have to show \(|(x_1+x_2)-(y_1+y_2)|\le |x_1-y_1|+|x_2-y_2|\). But this is an easy consequence of elementary calculus and the triangle inequality \(|x+y|\le |x|+|y|\).

To show order preservation we have to prove that \(x\ge y\) and \(y\ge z\) imply \(|x-y|\le |x-z|\) (note that the natural order of coincides with \(\ge \)). The proof of this obvious property and strictness is left to the reader.\(\square \)

Example 3.4 and Continuation. Considering additive subdistributivity of \({{\varvec{d}}}_{m}\) we have to show \(|\max \{x_1,x_2\}-\max \{y_1,y_2\}|\le \max \{|x_1-y_1|,|x_2-y_2|\}\). Here we assume w.l.o.g. \(x_2\le x_1\) and hence \(|\max \{x_1,x_2\}-\max \{y_1,y_2\}|=|x_1-\max \{y_1,y_2\}|\). Now we have the following cases:

  1. 1.

    \(y_1\ge y_2\): Then we have \(\max \{y_1,y_2\}=y_1\) and hence \(|\max \{x_1,x_2\}-\max \{y_1,y_2\}|=|x_1-y_1|\). This implies the claim due to \(|x_1-y_1|\le \max \{|x_1-y_1|,|x_2-y_2|\}\).

  2. 2.

    \(y_1<y_2\): Then we have \(\max \{y_1,y_2\}=y_2\) and hence \(|\max \{x_1,x_2\}-\max \{y_1,y_2\}|=|x_1-y_2|\). Again, we distinguish two cases:

    1. (2a)

      \(y_2\le x_1\): Then we have \(y_1<y_2\le x_1\) and hence \(|x_1-y_2|<|x_1-y_1|\), and \(|x_1-y_1|\le \max \{|x_1-y_1|,|x_2-y_2|\}\) implies the claim.

    2. (2b)

      \(y_2>x_1\): Recalling the assumption \(x_2\le x_1\) we have \(|x_1-y_2|\le |x_2-y_2|\); here \(|x_2-y_2|\le \max \{|x_1-y_1|,|x_2-y_2|\}\) implies the claim.

This shows additive subdistributivity; multiplicative subdistributivity corresponds to additive subdistributivity from Example 3.3. Order preservation and strictness are also left to the reader.\(\square \)

Example 3.5 and continuations First we show additive subdistributivity of \({{\varvec{d}}}_{w}\) via the inclusion

$$\begin{aligned} (A\cup B)\triangle (C\cup D)\subseteq (A\triangle C)\cup (B\triangle D). \end{aligned}$$
(1)

To this purpose, we expand the left side of Inequation 1 and obtain

$$\begin{aligned} ((A\cup B)\cap \overline{(C\cup D)})\cup ((C\cup D)\cap \overline{(A\cup B)}). \end{aligned}$$
(2)

Analogously, its right side can be rewritten as

$$\begin{aligned} (A\cap \overline{C})\cup (C\cap \overline{A})\cup (B\cap \overline{D})\cup (D\cap \overline{B}). \end{aligned}$$
(3)

Due to symmetry of Expressions 2 and 3 in the involved variables, it suffices to show that \((A\cup B)\cap \overline{(C\cup D)}\) is contained in Expression 3. However, \((A\cup B)\cap \overline{(C\cup D)}\) equals \((A\cap \overline{(C\cup D)})\cup (B\cap \overline{(C\cup D)})\), and \(A\cap \overline{(C\cup D)}\) is contained in \(A\cap \overline{C}\) (and hence in 3) due to antitony of the complement. An analogous argument shows that \((B\cap \overline{(C\cup D)})\) is contained in 3.

Strictness and order preservation are here a simple consequences of set theory so we give an example that this distance is not multiplicative. To this purpose, we consider the three languages \(L_1=_{def}\{a\}\), \(L_2=_{def}\{b\}\) and \(L_3=_{def}\{c\}\). Then we have \((L_1\cdot L_2)\triangle (L_1\cdot L_2)= \{ab,ac\}\nsubseteq \emptyset = (L_1\triangle L_1)\cdot (L_2\triangle L_3)\).

For norm-distributivity of \({{\varvec{d}}}_{w}\) we first note that its induced norm corresponds to the identity (due to \(\emptyset \triangle L=L\)) so we have to show \((L_1L_2)\triangle (L_1L_3)\subseteq L_1(L_2\triangle L_3)\) (for better readability, we omit the \(\cdot \) for concatenation). By expanding the symmetric difference and distributivity of concatenation over union this leads to the inclusion \((L_1L_2\backslash L_1L_3)\cup (L_1L_3\backslash L_1L_2)\subseteq L_1(L_2\backslash L_3)\cup L_1(L_3\backslash L_2)\). Obviously, it suffices to show \(L_1L_2\backslash L_1L_3\subseteq L_1(L_2\backslash L_3)\), so we reason as follows:

figure j

Additivity, strictness and order preservation of the -norm \(|\cdot |\) on \(\mathbf m LAN_{\varSigma }^{\mathbf{fin }}\) follow from basic facts about set cardinality. For multiplicative subdistributivity we consider two finite languages \(L_1\) and \(L_2\) and note that the mapping \(\mathbf{concat }:L_1\times L_2\rightarrow L_1\cdot L_2\), defined by \(\mathbf{concat }((w_1,w_2))=_{def}w_1\cdot w_2\) is surjective. Now we have \(|L_1\cdot L_2|\le |L_1\times L_2|= |L_1|\cdot |L_2|\) by surjectivity of \(\mathbf{concat }\) and elementary combinatorics. All properties of \({{\varvec{d}}}_{N}\) follow now from Theorem 4.6.\(\square \)

Example 4.3. Recall that a fuzzy relation according to [20] is a mapping \(\alpha :X\times X\rightarrow [0,1]\) for some set X. Addition of two fuzzy relations \(\alpha \) and \(\beta \) is defined by \((\alpha \oplus \beta )(x_1,x_2)=_{def}\max \{\alpha (x_1,x_2),\beta (x_1,x_2)\}\) and multiplication by \((\alpha \odot \beta )(x_1,x_2)=_{def}\max _{x_3\in X}\min \{\alpha (x_1,x_3),\beta (x_3,x_2)\}\) whereas the cardinality \(|\alpha |\) of a fuzzy relation \(\alpha \) is given by \(|\alpha |=_{def}\sum \limits _{x_1,x_2\in X}\alpha (x_1,x_2)\).

Consider now the set \(X=\{x_1,x_2\}\) and the two fuzzy relations \(\alpha \) and \(\beta \) with \(\alpha (x_1,x_2)= 1= \beta (x_2,x_1)\) and \(\alpha (x_i,x_j)= 0= \beta (x_i,x_j)\) otherwise. Then \(\alpha \oplus \beta \) is given by \((\alpha \oplus \beta )(x_1,x_2)= 1= (\alpha \oplus \beta )(x_2,x_1)\) and \((\alpha \oplus \beta )(x_1,x_1)= 0= (\alpha \oplus \beta )(x_2,x_2)\). Hence we have \(|\alpha \oplus \beta |=2\) but on the other hand \(\max \{|\alpha |,|\beta |\}= \max \{1,1\}= 1\), so the fuzzy cardinality is no additive -norm.

Writing finite fuzzy relations in a canonical way as matrices we consider now the the fuzzy relations \(\alpha = \begin{pmatrix} 0 &{} 0 &{} 0 \\ 0.9 &{} 0 &{} 0\\ 0.9 &{} 0 &{} 0 \end{pmatrix} \) and \(\beta = \begin{pmatrix} 0.9 &{} 0.9 &{} 0.9 \\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 \end{pmatrix} \). Then we have \(|\alpha |+|\beta |=4.5\) but also \(\alpha \odot \beta = \begin{pmatrix} 0 &{} 0 &{} 0 \\ 0.9 &{} 0.9 &{} 0.9\\ 0.9 &{} 0.9 &{} 0.9 \end{pmatrix} \) and hence \(|\alpha \odot \beta |=5.4\) so the fuzzy cardinality is no multiplicative -norm either.

However, the fuzzy cardinality is a strict and order preserving norm which can be easily seen by isotony of addition and the equivalence \(\sum \limits _{x\in X}x=0\Leftrightarrow \forall x\in X:x=0\), provided the fact \(x\ge 0\) for all \(x\in X\) (note that the range of a fuzzy relation is the interval [0, 1]).\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glück, R. (2018). Distances, Norms and Error Propagation in Idempotent Semirings. In: Desharnais, J., Guttmann, W., Joosten, S. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2018. Lecture Notes in Computer Science(), vol 11194. Springer, Cham. https://doi.org/10.1007/978-3-030-02149-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02149-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02148-1

  • Online ISBN: 978-3-030-02149-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics