Skip to main content

Using Deep Learning to Generate Relational HoneyData

  • Chapter
  • First Online:
Autonomous Cyber Deception

Abstract

Although there has been a plethora of work in generating deceptive applications, generating deceptive data that can easily fool attackers received very little attention. In this book chapter, we discuss our secure deceptive data generation framework that makes it hard for an attacker to distinguish between the real versus deceptive data. Especially, we discuss how to generate such deceptive data using deep learning and differential privacy techniques. In addition, we discuss our formal evaluation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 February 2020

    This book was inadvertently published as an authored work with the chapter authors mentioned in the footnotes of the chapter opening pages. This has now been updated and the chapter authors have been mentioned in the respective chapter opening pages as mentioned below:

Notes

  1. 1.

    https://www.cnet.com/news/linkedin-confirms-passwords-were-compromised/.

References

  1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016)

    Google Scholar 

  2. Abay, N.C., Zhou, Y., Kantarcioglu, M., Thuraisingham, B., Sweeney, L.: Privacy preserving synthetic data release using deep learning. The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (PKDD 2018) (2018)

    Google Scholar 

  3. Ács, G., Melis, L., Castelluccia, C., Cristofaro, E.D.: Differentially private mixture of generative neural networks. CoRR abs/1709.04514 (2017). URL http://arxiv.org/abs/1709.04514

  4. Almeshekah, M.H., Spafford, E.H.: Cyber security deception. In: Cyber Deception, pp. 23–50. Springer (2016)

    Google Scholar 

  5. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML workshop on unsupervised and transfer learning, pp. 37–49 (2012)

    Google Scholar 

  6. Bindschaedler, V., Shokri, R., Gunter, C.A.: Plausible deniability for privacy-preserving data synthesis. Proceedings of the VLDB Endowment 10(5), 481–492 (2017)

    Article  Google Scholar 

  7. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

    Article  Google Scholar 

  8. Bun, M., Steinke, T.: Concentrated differential privacy: Simplifications, extensions, and lower bounds. In: Theory of Cryptography Conference, pp. 635–658. Springer (2016)

    Google Scholar 

  9. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: Advances in Neural Information Processing Systems, pp. 289–296 (2009)

    Google Scholar 

  10. Dwork, C.: Differential privacy. In: Proceedings of the 33rd International Conference on Automata, Languages and Programming - Volume Part II, ICALP’06, pp. 1–12. Springer-Verlag, Berlin, Heidelberg (2006). DOI 10.1007/11787006_1. URL http://dx.doi.org/10.1007/11787006_1

  11. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy via distributed noise generation. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 486–503. Springer (2006)

    Google Scholar 

  12. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Proceedings of the forty-first annual ACM symposium on Theory of computing, pp. 371–380. ACM (2009)

    Google Scholar 

  13. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science 9(3–4), 211–407 (2014)

    Article  MathSciNet  Google Scholar 

  14. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear classification. Journal of machine learning research 9(Aug), 1871–1874 (2008)

    MATH  Google Scholar 

  15. Goodfellow, I.: Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799 (2015)

    Google Scholar 

  16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  17. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intelligent Systems and their applications 13(4), 18–28 (1998)

    Article  Google Scholar 

  18. Holz, T., Raynal, F.: Detecting honeypots and other suspicious environments. In: Information Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC, pp. 29–36. IEEE (2005)

    Google Scholar 

  19. Juels, A., Rivest, R.L.: Honeywords: Making password-cracking detectable. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 145–160. ACM (2013)

    Google Scholar 

  20. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering 160, 3–24 (2007)

    Google Scholar 

  21. Lichman, M.: UCI machine learning repository (2013). URL http://archive.ics.uci.edu/ml

  22. Nerlove, M., Press, S.J.: Univariate and multivariate log-linear and logistic models, vol. 1306. Rand Santa Monica (1973)

    Google Scholar 

  23. Park, M., Foulds, J., Chaudhuri, K., Welling, M.: Practical privacy for expectation maximization. CoRR abs/1605.06995 (2016). URL http://arxiv.org/abs/1605.06995

  24. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013)

    Google Scholar 

  25. Rubin, D.B.: Discussion statistical disclosure limitation. Journal of official Statistics 9(2), 461 (1993)

    Google Scholar 

  26. Rubinstein, B.I., Bartlett, P.L., Huang, L., Taft, N.: Learning in a large function space: Privacy-preserving mechanisms for SVM learning. arXiv preprint arXiv:0911.5708 (2009)

    Google Scholar 

  27. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001). DOI 10.1162/089976601750264965. URL https://doi.org/10.1162/089976601750264965

    Article  MATH  Google Scholar 

  28. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially private updates. In: Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE, pp. 245–248. IEEE (2013)

    Google Scholar 

  29. Spitzner, L.: Honeypots: tracking hackers, vol. 1. Addison-Wesley Reading (2003)

    Google Scholar 

  30. Vaidya, J., Shafiq, B., Basu, A., Hong, Y.: Differentially private naive Bayes classification. In: Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 01, pp. 571–576. IEEE Computer Society (2013)

    Google Scholar 

  31. Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: deceptive files for intrusion detection. In: Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC, pp. 116–122. IEEE (2004)

    Google Scholar 

  32. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes: Private data release via Bayesian networks. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pp. 1423–1434. ACM (2014)

    Google Scholar 

  33. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional mechanism: regression analysis under differential privacy. Proceedings of the VLDB Endowment 5(11), 1364–1375 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kantarcioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abay, N.C., Akcora, C.G., Zhou, Y., Kantarcioglu, M., Thuraisingham, B. (2019). Using Deep Learning to Generate Relational HoneyData. In: Al-Shaer, E., Wei, J., Hamlen, K., Wang, C. (eds) Autonomous Cyber Deception. Springer, Cham. https://doi.org/10.1007/978-3-030-02110-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02110-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02109-2

  • Online ISBN: 978-3-030-02110-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics