Breaking Determinacy

  • Mike R. Jeffrey


The organizing centres of local and global behaviour in smooth systems are most commonly equilibria—fixed points of a flow—or invariant manifolds emanating from equilibria. In nonsmooth systems, it turns out to be transitional points—singularities the flow passes through in finite time—that create the most interesting dynamics.


  1. 3.
    M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, 1964.Google Scholar
  2. 37.
    A. Colombo and M. R. Jeffrey. Non-deterministic chaos, and the two-fold singularity in piecewise smooth flows. SIAM J. App. Dyn. Sys., 10:423–451, 2011.CrossRefGoogle Scholar
  3. 38.
    A. Colombo and M. R. Jeffrey. The two-fold singularity: leading order dynamics in n-dimensions. Physica D, 263:1–10, 2013.MathSciNetCrossRefGoogle Scholar
  4. 48.
    M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk. Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, 2008.zbMATHGoogle Scholar
  5. 51.
    L. Dieci. Sliding motion on the intersection of two surfaces: spirally attractive case. Commun. Nonlin. Sci. Numer. Simul., 26, 65–74, 2015.CrossRefGoogle Scholar
  6. 71.
    A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publ. Dortrecht, 1988 (Russian 1985).Google Scholar
  7. 115.
    M. R. Jeffrey. Exit from sliding in piecewise-smooth flows: deterministic vs. determinacy-breaking. Chaos, 26(3):033108:1–20, 2016.Google Scholar
  8. 140.
    Yu. A. Kuznetsov, S. Rinaldi, and A. Gragnani. One-parameter bifurcations in planar Filippov systems. Int. J. Bif. Chaos, 13:2157–2188, 2003.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mike R. Jeffrey
    • 1
  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations