Skip to main content

Introduction

  • Chapter
  • First Online:
Mobile Data Mining

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 519 Accesses

Abstract

Smartphones are usually equipped with various sensors by which the personal data of the users can be collected. To make full use of the smartphone data, mobile data mining aims to discover useful knowledge from the collected data in order to provide better services for the users. In this chapter, we introduce some background information about mobile data mining, including what data can be collected by smartphones, what applications can be built upon the collected data, what are the key steps for a typical mobile data mining task, and what are the key characteristics and challenges of mobile data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2016) URL https://mysleepbot.com/

  2. (2016) URL http://stepzapp.com/

  3. Abbasi A, Rashidi TH, Maghrebi M, Waller ST (2015) Utilising location based social media in travel survey methods: bringing twitter data into the play. In: Proceedings of the 8th ACM SIGSPATIAL International Workshop on Location-Based Social Networks, ACM, p 1

    Google Scholar 

  4. Becker R, Cáceres R, Hanson K, Isaacman S, Loh JM, Martonosi M, Rowland J, Urbanek S, Varshavsky A, Volinsky C (2013) Human mobility characterization from cellular network data. Communications of the ACM 56(1):74–82

    Article  Google Scholar 

  5. Benjamin B, Erinc G, Carpin S (2015) Real-time wifi localization of heterogeneous robot teams using an online random forest. Autonomous Robots 39(2):155–167

    Article  Google Scholar 

  6. Chakravarty T, Ghose A, Bhaumik C, Chowdhury A (2013) Mobidrivescore - a system for mobile sensor based driving analysis: A risk assessment model for improving one’s driving. In: Sensing Technology (ICST), 2013 Seventh International Conference on, IEEE, pp 338–344

    Google Scholar 

  7. Chen C, Gong H, Lawson C, Bialostozky E (2010) Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the new york city case study. Transportation Research Part A: Policy and Practice 44(10):830–840

    Google Scholar 

  8. Chen PT, Hsieh HP (2012) Personalized mobile advertising: Its key attributes, trends, and social impact. Technological Forecasting and Social Change 79(3):543–557

    Article  Google Scholar 

  9. Chon J, Cha H (2011) Lifemap: A smartphone-based context provider for location-based services. IEEE Pervasive Computing (2):58–67

    Article  Google Scholar 

  10. De Nunzio G, Wit CC, Moulin P, Di Domenico D (2015) Eco-driving in urban traffic networks using traffic signals information. International Journal of Robust and Nonlinear Control

    Google Scholar 

  11. Enck W, Gilbert P, Han S, Tendulkar V, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2014) Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Transactions on Computer Systems (TOCS) 32(2):5

    Article  Google Scholar 

  12. Feng C, Au WSA, Valaee S, Tan Z (2012) Received-signal-strength-based indoor positioning using compressive sensing. Mobile Computing, IEEE Transactions on 11(12): 1983–1993

    Article  Google Scholar 

  13. Ferris B, Fox D, Lawrence ND (2007) Wifi-slam using gaussian process latent variable models. In: IJCAI, vol 7, pp 2480–2485

    Google Scholar 

  14. Grabowicz PA, Ramasco JJ, Gonçalves B, Eguíluz VM (2014) Entangling mobility and interactions in social media. PLoS One 9(3):e92,196

    Article  Google Scholar 

  15. Habib MA, Mohktar MS, Kamaruzzaman SB, Lim KS, Pin TM, Ibrahim F (2014) Smartphone-based solutions for fall detection and prevention: challenges and open issues. Sensors 14(4):7181–7208

    Article  Google Scholar 

  16. Huang J, Millman D, Quigley M, Stavens D, Thrun S, Aggarwal A (2011) Efficient, generalized indoor wifi graphslam. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on, IEEE, pp 1038–1043

    Google Scholar 

  17. Khan AM, Lee YK, Lee S, Kim TS (2010) Human activity recognition via an accelerometer-enabled-smartphone using kernel discriminant analysis. In: Future Information Technology (FutureTech), 2010 5th International Conference on, IEEE, pp 1–6

    Google Scholar 

  18. Ladd AM, Bekris KE, Rudys A, Kavraki LE, Wallach DS (2005) Robotics-based location sensing using wireless ethernet. Wireless Networks 11(1–2):189–204

    Article  Google Scholar 

  19. Lathia N, Capra L (2011) Mining mobility data to minimise travellers’ spending on public transport. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 1181–1189

    Google Scholar 

  20. Le LT, Eliassi-Rad T, Provost F, Moores L (2013) Hyperlocal: inferring location of ip addresses in real-time bid requests for mobile ads. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Location-Based Social Networks, ACM, pp 24–33

    Google Scholar 

  21. LiKamWa R, Liu Y, Lane ND, Zhong L (2011) Can your smartphone infer your mood. In: PhoneSense workshop, pp 1–5

    Google Scholar 

  22. Liu K, Liu X, Li X (2013) Guoguo: Enabling fine-grained indoor localization via smartphone. In: Proceeding of the 11th annual international conference on Mobile systems, applications, and services, ACM, pp 235–248

    Google Scholar 

  23. Maghdid HS, Lami IA, Ghafoor KZ, Lloret J (2016) Seamless outdoors-indoors localization solutions on smartphones: Implementation and challenges. ACM Computing Surveys (CSUR) 48(4):53

    Article  Google Scholar 

  24. Manzoni V, Maniloff D, Kloeckl K, Ratti C (2010) Transportation mode identification and real-time co2 emission estimation using smartphones. SENSEable City Lab, Massachusetts Institute of Technology, nd

    Google Scholar 

  25. Martín H, Bernardos AM, Iglesias J, Casar JR (2013) Activity logging using lightweight classification techniques in mobile devices. Personal and ubiquitous computing 17(4):675–695

    Article  Google Scholar 

  26. Papadimitriou S, Eliassi-Rad T (2015) Mining mobility data. In: Proceedings of the 24th International Conference on World Wide Web Companion, International World Wide Web Conferences Steering Committee, pp 1541–1542

    Google Scholar 

  27. Provost FJ, Eliassi-Rad T, Moores LS (2015) Methods, systems, and media for determining location information from real-time bid requests. US Patent 9,014,717

    Google Scholar 

  28. Raento M, Oulasvirta A, Petit R, Toivonen H (2005) Contextphone: A prototyping platform for context-aware mobile applications. Pervasive Computing, IEEE 4(2):51–59

    Article  Google Scholar 

  29. Ratti C, Sobolevsky S, Calabrese F, Andris C, Reades J, Martino M, Claxton R, Strogatz SH (2010) Redrawing the map of great britain from a network of human interactions. PloS one 5(12):e14,248

    Article  Google Scholar 

  30. Rissel C, Curac N, Greenaway M, Bauman A (2012) Physical activity associated with public transport use: a review and modelling of potential benefits. International journal of environmental research and public health 9(7):2454–2478

    Article  Google Scholar 

  31. Rossi M, Seiter J, Amft O, Buchmeier S, Tröster G (2013) Roomsense: an indoor positioning system for smartphones using active sound probing. In: Proceedings of the 4th Augmented Human International Conference, ACM, pp 89–95

    Google Scholar 

  32. Sadilek A, Kautz H, Bigham JP (2012) Finding your friends and following them to where you are. In: Proceedings of the fifth ACM international conference on Web search and data mining, ACM, pp 723–732

    Google Scholar 

  33. Shaheen S, Guzman S, Zhang H (2010) Bikesharing in europe, the americas, and asia: past, present, and future. Transportation Research Record: Journal of the Transportation Research Board (2143):159–167

    Article  Google Scholar 

  34. Toole JL, Herrera-Yaqüe C, Schneider CM, González MC (2015) Coupling human mobility and social ties. Journal of The Royal Society Interface 12(105):20141,128

    Article  Google Scholar 

  35. Varnali K, Toker A (2010) Mobile marketing research: The-state-of-the-art. International journal of information management 30(2):144–151

    Article  Google Scholar 

  36. Wu C, Yang Z, Liu Y (2015) Smartphones based crowdsourcing for indoor localization. Mobile Computing, IEEE Transactions on 14(2):444–457

    Article  Google Scholar 

  37. Xie H, Gu T, Tao X, Ye H, Lv J (2014) Maloc: A practical magnetic fingerprinting approach to indoor localization using smartphones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM, pp 243–253

    Google Scholar 

  38. Xu Z, Bai K, Zhu S (2012) Taplogger: Inferring user inputs on smartphone touchscreens using on-board motion sensors. In: Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile Networks, ACM, pp 113–124

    Google Scholar 

  39. Ye H, Gu T, Zhu X, Xu J, Tao X, Lu J, Jin N (2012) Ftrack: Infrastructure-free floor localization via mobile phone sensing. In: Pervasive Computing and Communications (PerCom), 2012 IEEE International Conference on, IEEE, pp 2–10

    Google Scholar 

  40. Ye H, Gu T, Tao X, Lu J (2014) Sbc: Scalable smartphone barometer calibration through crowdsourcing. In: Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp 60–69

    Google Scholar 

  41. Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y (2010) T-drive: driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL International conference on advances in geographic information systems, ACM, pp 99–108

    Google Scholar 

  42. Yuan J, Zheng Y, Xie X (2012) Discovering regions of different functions in a city using human mobility and pois. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 186–194

    Google Scholar 

  43. Zheng Y, Liu Y, Yuan J, Xie X (2011) Urban computing with taxicabs. In: Proceedings of the 13th international conference on Ubiquitous computing, ACM, pp 89–98

    Google Scholar 

  44. Zheng Y, Capra L, Wolfson O, Yang H (2014) Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST) 5(3):38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yao, Y., Su, X., Tong, H. (2018). Introduction. In: Mobile Data Mining. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-02101-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02101-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02100-9

  • Online ISBN: 978-3-030-02101-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics