Skip to main content

Smartphone “Dual” Spectrometer

  • Chapter
  • First Online:
Smartphone Instrumentations for Public Health Safety

Part of the book series: Wireless Networks ((WN))

Abstract

Traditionally, most smartphone-based colorimetric devices including the intensity fluorimeters demonstrated in the previous chapters are designed to detect intensity through three specific color bands (red, green and blue) set by the color filters used in the smartphone’s CMOS camera pixels. More advanced instrumentations, such as spectrometers, are receiving evermore research attention due to their capability of extracting more information by looking at range of wavelengths. This chapter will discuss the developments of a number of smartphone spectrometers, covering optical design, fabrication, app development, calibration and finally some proof-of-principle applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. K. Yang, H. Peretz-Soroka, Y. Liu, and F. Lin, “Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones,” Lab Chip, 16(6), pp. 943-958, Mar. 2016

    Article  Google Scholar 

  2. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, “Simple telemedicine for developing regions: Camera phone and paper based microfluidic devices for real-time, off-site diagnosis,” Anal. Chem., 80(10), pp. 3699-3707, Apr. 2008.

    Article  Google Scholar 

  3. H. Parastar and H. Shaye, “MVC app: A smartphone application for performing chemometric methods,” Chemometr. Intell. Lab. Syst., 147, pp. 105-110, Oct. 2015.

    Article  Google Scholar 

  4. Google Play, AssayColor, [Online]. Available: https://play.google.com/store/apps/details?id=com.alidans.assaycolor&hl=en

  5. Google Play, Technical Analysis Tool, [Online]. Available: https://play.google.com/store/apps/details?id=ua.antonSydorenko.easyTechAnalysis&hl=en

  6. NJew

    Google Scholar 

  7. T. Guo, R. Patnaik, K. Kuhlmann, A. J. Rai, and S. K. Sia, “Smartphone dongle for simultaneous measurement of hemoglobin concentration and detection of HIV antibodies,” Lab Chip, 15(17), pp. 3514-20,Sep. 2015.

    Article  Google Scholar 

  8. S. Wang, X. Zhao, I. Khimji, R. Akbas, W. Qiu, D. Edwards, D. W. Cramer, B. Ye, and U. Demirci, “Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care,” Lab Chip, 11(20), pp. 3411-3418, Oct. 2011.

    Article  Google Scholar 

  9. V. Oncescu, D. O’Dell, and D. Erickson, “Smartphone based health accessory for colorimetric detection of biomarkers in sweet and saliva,” Lab Chip, 13(16), pp. 3232-8, Aug. 2013.

    Article  Google Scholar 

  10. L. Shen, J. A. Hagen, and I. Papautsky,“Point-of-care colorimetric detection with a smartphone,” Lab Chip, 12(21), pp. 4240-4243,Oct. 2012.

    Article  Google Scholar 

  11. M. Y. Jia, Q. S. Wu, H. Li, Y. Zhang, Y. F. Guan, and L. Feng, “The calibration of cellphone camera-based colorimetric sensor array and its application in the determination of glucose in urine,” Biosens. Bioelectron., 74, pp. 1029-1037, Dec. 2015.

    Article  Google Scholar 

  12. J. I. Hong and B. Y. Chang, “Development of smartphone-based colorimetry for multi-analyte sensing arrays” Lab Chip, 14(10), pp. 1725-32, May 2014.

    Article  Google Scholar 

  13. V. Oncescu, M. Mancuso, and D. Erickson, “Cholesterol testing on a smartphone” Lab Chip, 14(4), pp. 759–763, Feb. 2014.

    Article  Google Scholar 

  14. M. Mancuso, E. Cesarman, and D. Erickson, “Detection of Kaposi’s sarcoma associated herpesvirus nucleic acids using a smartphone accessory,” Lab Chip, 14(19), pp. 3809-16,Oct. 2014.

    Article  Google Scholar 

  15. M. Pohanka “Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by anbutyrylcholinesterase activity assay,” Sensors, 15(6), pp. 13752-62, Jun. 2015.

    Article  Google Scholar 

  16. S. Lee, V. Oncescu, M. Mancuso, S. Mehta, and D. Erickson “A smartphone platform for quantification of vitamin D levels,” Lab Chip, 14(8), pp. 1437-42, Apr. 2014.

    Article  Google Scholar 

  17. Z. J. Smith, K. Chu, A. R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D. M. Dwyre, S. Lane, D. Matthews, and S. W. Hogiu, “Cell-phone-based platform for biomedical device development and education applications” PLoS ONE, 6(3), p. e17150, Mar. 2011.

    Article  Google Scholar 

  18. H. Yu, Y. Tan, and B. T. Cunningham, “Smartphone fluorescence spectroscopy,” Anal. Chem., 86(17), pp. 8805-13, Sep. 2014.

    Article  Google Scholar 

  19. K. D. Long, H. Yu, and B. T. Cunningham, “Smartphone instruments for portable enzyme-linked immunosorbent assay,” Biomed. Opt. Express, 5(11), pp. 3792-806, Nov. 2014.

    Article  Google Scholar 

  20. S. Dutta, A. Choudhury, and P. Nath, “Evanescent wave coupled spectroscopic sensing using smartphone,” IEEE Phot. Tech. Lett., 26(6), 568-570, Mar. 2014.

    Article  Google Scholar 

  21. S. Dutta, D. Sarma, A. Patel, and P. Nath, “Dye-assisted pH sensing using a smartphone” IEEE Phot. Tech. Lett., 27(22), pp. 2363–2366, Nov. 2015.

    Article  Google Scholar 

  22. S. Dutta, G. P. Saikia, D. J. Sarma, K. Gupta, P. Das, and P. Nath, “Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique,” J. Biophotonics, 2016, pp. 1–11, May 2016.

    Google Scholar 

  23. E. K. Grasse, M. H. Torcasio, and A. W. Smith, “Teaching UV–Vis spectroscopy with a 3D-printable smartphone spectrophotometer,” J. Chem. Educ., 93(1), pp. 146–151, Nov. 2016.

    Article  Google Scholar 

  24. Y. Wang, X. Liu, P. Chen, N. T. Tran, J. Zhang, W. S. Chia, S. Boujday, and B. Liedberg “Smartphone spectrometer for colorimetric bio-sensing,” Analyst, 141(11), pp. 3233-38, Jun. 2016.

    Article  Google Scholar 

  25. E. Petryayevaand W. R. Algar, “A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence,” Anal. Bioanal. Chem., 408(11), pp. 2913–2925 Apr. 2016.

    Article  Google Scholar 

  26. C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, “G-Fresnel smartphone spectrometer,” Lab Chip, 16(2), pp. 246-250, Jan. 2016.

    Article  Google Scholar 

  27. M. A. Hossain, J. Canning, Z. Yu, K. Cook, S. Ast and A. Jamalipour, “Fluorescence-based quality assurance of olive oils using a smartphone spectrofluorimeter,” To be submitted soon.

    Google Scholar 

  28. G. Gauglitz and T. Vo-Dinh, Handbook of spectroscopy, Weinheim. WILEY-VCH, 2003.

    Book  Google Scholar 

  29. J. Canning, A. Lau, M. Naqshbandi, I. Petermann, and M. J. Crossley, “Measurement of fluorescence in a Rhodamine-123 doped self-assembled ‘giant’ mesostructured silica sphere using asmartphone as optical hardware,” Sensors, 11(7), pp. 7055–7062, Jul. 2011.

    Article  Google Scholar 

  30. J. Canning, M. Naqshbandi, and M. J. Crossley, “Measurement of Rhodamine B absorption in self-assembled silica microwires using a Tablet as the optical source,” Proc. SPIE, 8351, pp. 83512E-1–83512E-5, Jan. 2012.

    Google Scholar 

  31. J. M. Lerner, and A. Thevenon, The Optics of Spectroscopy, Horiba Scientific. [Online]. Available: http://www.horiba.com/us/en/scientific/products/optics-tutorial/.

  32. 3D Spectra Tech, What is 3D printing, 3D Spectra Technologies LLP, [Online available] http://www.3dspectratech.com/what-is-3d-printing.

  33. J. Poulin and R. Kashyap, “Novel tuneable on-fiber polymeric phase-mask for fiber and planar waveguide Gragg grating fabrication,” Opt. Express, 13(12), pp. 4414-19, Jun. 2005.

    Article  Google Scholar 

  34. Spectrometer design limnk

    Google Scholar 

  35. M. A. Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined ‘dual’ absorption and fluorescence smartphone spectrometers,” Opt. Lett. 40(8), pp. 1737–1740, Apr. 2015.

    Article  Google Scholar 

  36. Bumper, [Online]. Available: https://publiclab.org/notes/MrBumper/01-11-2015/preparing-a-dvd-r-to-act-as-a-diffractiongrating.

  37. I. I. Bogoch, J. R. Andrews, B. Speich, J. Utzinger, S. M. Ame, S. M. Ali, and J. Keiser, “Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study,” Am. J. Trop. Med. Hyg., 88(4), pp. 626-629, Apr. 2013.

    Article  Google Scholar 

  38. S. Ast, P. J. Rutledge, and M. H. Todd, “Reversing the triazole topology in a cyclam-triazole-dye ligand gives a 10 fold brighter signal response to Zn2+ in aqueous solution,” Eur. J. Inorg. Chem., 2012(34), pp. 5611–5615, Dec. 2012.

    Article  Google Scholar 

  39. A. P. de Silva, H. Q. N. Gunaratne, J.-L. Habib-Jiwan, C. P. McCoy, T. E. Rice, and J.-P. Soumillion, “New fluorescent model compounds for the study of photoinduced electron transfer: The influence of a molecular electric field in the excited state,” Angew. Chem. Int. Ed. Eng., 34(16), pp. 1728–1731, Sep. 1995.

    Article  Google Scholar 

  40. M. A. Hossain, J. Canning, K. Cook, and A. Jamalipour, “Smartphone spectrometer with fiber endoscope probe” Proc. Australian and New Zealand Conference on Optics and Photonics (ANZCOP), Nov.- Dec. 2015.

    Google Scholar 

  41. J. Canning, S. Ast, M. A. Hossain, H. Chan, P. J. Rutledge, and A. Jamalipour, “Bend and twist intramolecular charge transfer and emission for selective metal ion sensing,” Opt. Mat. Express, 5(11), pp. 2675-2681, Oct. 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamalipour, A., Hossain, M.A. (2019). Smartphone “Dual” Spectrometer. In: Smartphone Instrumentations for Public Health Safety. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-02095-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02095-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02094-1

  • Online ISBN: 978-3-030-02095-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics