Mechanical Mediation of Signaling Pathways in Heart Valve Development and Disease

  • Ishita Tandon
  • Ngoc Thien Lam
  • Kartik BalachandranEmail author


Heart valves are elegant, dynamic, pliable structures experiencing complex and varied mechanical forces during development and throughout the course of their postnatal lifetime. Recent work has shown a remarkable link between the mechanical environment of these valve leaflets and their structure, function, and biological behavior. Additionally, these mechanobiological responses, while being regulated by a similar set of signaling pathways, may be very different depending on their occurrence during valvulogenesis or during adulthood. This chapter reviews what is currently known about these differentially mechanoregulated signaling pathways in the heart valve, highlighting any gaps in knowledge.


Heart valve Valve formation Valvulogenesis Valve disease Mechanobiology Signaling pathways 


  1. 1.
    Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam. 2011;2011:263870.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Sacks MS, David Merryman W, Schmidt DE. On the biomechanics of heart valve function. J Biomech. 2009;42(12):1804–24.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1369–91.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Merryman WD, et al. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol. 2007;16(5):268–76.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Merryman WD, et al. Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells. Tissue Eng. 2007;13:2281.CrossRefGoogle Scholar
  6. 6.
    Huang HY, Liao J, Sacks MS. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J Biomech Eng. 2007;129(6):880–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Balachandran K, et al. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol. 2010;177(1):49–57.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Butcher JT, Nerem RM. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 2006;12(4):905–15.CrossRefGoogle Scholar
  9. 9.
    Mahler GJ, Butcher JT. Inflammatory regulation of valvular remodeling: the good(?), the bad, and the ugly. Int J Inflam. 2011;2011:721419.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Atkins SK, et al. Bicuspid aortic valve hemodynamics induces abnormal medial remodeling in the convexity of porcine ascending aortas. Biomech Model Mechanobiol. 2014;13:1209.PubMedCrossRefGoogle Scholar
  11. 11.
    Richards JM, et al. The mechanobiology of mitral valve function, degeneration, and repair. J Vet Cardiol. 2012;14(1):47–58.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Balachandran K, et al. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci U S A. 2011;108(50):19943–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Markwald RR, Butcher JT. The next frontier in cardiovascular developmental biology—an integrated approach to adult disease? Nat Clin Pract Cardiovasc Med. 2007;4(2):60–1.PubMedCrossRefGoogle Scholar
  14. 14.
    Wylie-Sears J, et al. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler Thromb Vasc Biol. 2011;31(3):598–607.CrossRefGoogle Scholar
  15. 15.
    Goodwin RL, et al. Three-dimensional model system of valvulogenesis. Dev Dyn. 2005;233(1):122–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol. 2014;5:318.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Butcher JT, Simmons CA, Warnock JN. Mechanobiology of the aortic heart valve. J Heart Valve Dis. 2008;17(1):62–73.Google Scholar
  18. 18.
    Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004;95(5):459–70.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Combs MD, Yutzey KE. VEGF and RANKL regulation of NFATc1 in heart valve development. Circ Res. 2009;105(6):565–74.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009;105(5):408–21.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhou J, et al. Cadherin-11 expression patterns in heart valves associate with key functions during embryonic cushion formation, valve maturation and calcification. Cells Tissues Organs. 2013;198(4):300–10.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Moskowitz IP, et al. Transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. Proc Natl Acad Sci U S A. 2011;108(10):4006–11.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hinton RB, Yutzey KE. Heart valve structure and function in development and disease. Annu Rev Physiol. 2011;73:29–46.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lindsey SE, Butcher JT. The cycle of form and function in cardiac valvulogenesis. Aswan Heart Cent Sci Pract Ser. 2011;2011:10.CrossRefGoogle Scholar
  25. 25.
    Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol. 2012;11(8):1187–204.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Granados-Riveron JT, Brook JD. The impact of mechanical forces in heart morphogenesis. Circ Cardiovasc Genet. 2012;5(1):132–42.PubMedCrossRefGoogle Scholar
  27. 27.
    Boselli F, Freund JB, Vermot J. Blood flow mechanics in cardiovascular development. Cell Mol Life Sci. 2015;72(13):2545–59.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Steed E, Boselli F, Vermot J. Hemodynamics driven cardiac valve morphogenesis. Biochim Biophys Acta. 2016;1863(7B):1760–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson B, et al. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech Model Mechanobiol. 2015;14(6):1379–89.PubMedCrossRefGoogle Scholar
  30. 30.
    Kalogirou S, et al. Intracardiac flow dynamics regulate atrioventricular valve morphogenesis. Cardiovasc Res. 2014;104(1):49–60.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tao G, Kotick JD, Lincoln J. Heart valve development, maintenance, and disease: the role of endothelial cells. Curr Top Dev Biol. 2012;100:203–32.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chester AH, et al. The living aortic valve: from molecules to function. Global Cardiol Sci Pract. 2014;2014(1):52–77.Google Scholar
  33. 33.
    Back M, et al. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res. 2013;99(2):232–41.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Riem Vis PW, et al. Environmental regulation of valvulogenesis: implications for tissue engineering. Eur J Cardiothorac Surg. 2011;39(1):8–17.PubMedCrossRefGoogle Scholar
  35. 35.
    Camenisch TD, et al. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med. 2002;8(8):850–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development. 2000;127(18):3941–6.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Hallaq H, et al. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development. 2004;131(20):5197–209.PubMedCrossRefGoogle Scholar
  38. 38.
    Butcher JT, Markwald RR. Valvulogenesis: the moving target. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1489–503.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Johnson EN, et al. NFATc1 mediates vascular endothelial growth factor-induced proliferation of human pulmonary valve endothelial cells. J Biol Chem. 2003;278(3):1686–92.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rabkin E, et al. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104(21):2525–32.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chang CP, et al. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell. 2004;118(5):649–63.PubMedCrossRefGoogle Scholar
  42. 42.
    de la Pompa JL, et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature. 1998;392(6672):182–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Lambrechts D, Carmeliet P. Sculpting heart valves with NFATc and VEGF. Cell. 2004;118(5):532–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development. 2011;138(17):3593–612.PubMedCrossRefGoogle Scholar
  45. 45.
    Timmerman LA, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18(1):99–115.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Garg V, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Marvin MJ, et al. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001;15(3):316–27.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hurlstone AF, et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature. 2003;425(6958):633–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liebner S, et al. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol. 2004;166(3):359–67.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gitler AD, et al. Molecular markers of cardiac endocardial cushion development. Dev Dyn. 2003;228(4):643–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Person AD, et al. Frzb modulates Wnt-9a-mediated beta-catenin signaling during avian atrioventricular cardiac cushion development. Dev Biol. 2005;278(1):35–48.PubMedCrossRefGoogle Scholar
  52. 52.
    Ma L, et al. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005;132(24):5601–11.PubMedCrossRefGoogle Scholar
  53. 53.
    Delot EC. Control of endocardial cushion and cardiac valve maturation by BMP signaling pathways. Mol Genet Metab. 2003;80(1–2):27–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Liu W, et al. Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proc Natl Acad Sci U S A. 2004;101(13):4489–94.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol. 2001;235(2):449–66.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kaden JJ, et al. Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis. 2004;13(4):560–6.Google Scholar
  57. 57.
    Winnier G, et al. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9(17):2105–16.PubMedCrossRefGoogle Scholar
  58. 58.
    Solloway MJ, Robertson EJ. Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development. 1999;126(8):1753–68.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Inai K, et al. BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis. Dev Biol. 2008;315(2):383–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Shelton EL, Yutzey KE. Tbx20 regulation of endocardial cushion cell proliferation and extracellular matrix gene expression. Dev Biol. 2007;302(2):376–88.PubMedCrossRefGoogle Scholar
  61. 61.
    Shelton EL, Yutzey KE. Twist1 function in endocardial cushion cell proliferation, migration, and differentiation during heart valve development. Dev Biol. 2008;317(1):282–95.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lincoln J, Alfieri CM, Yutzey KE. BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells. Dev Biol. 2006;292(2):292–302.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhao B, et al. BMP and FGF regulatory pathways in semilunar valve precursor cells. Dev Dyn. 2007;236(4):971–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Brown CB, et al. Antibodies to the type II TGFbeta receptor block cell activation and migration during atrioventricular cushion transformation in the heart. Dev Biol. 1996;174(2):248–57.PubMedCrossRefGoogle Scholar
  65. 65.
    Azhar M, et al. Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn. 2009;238(2):431–42.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol. 2005;243:287–335.CrossRefGoogle Scholar
  67. 67.
    Molin DG, et al. Expression patterns of Tgfbeta1-3 associate with myocardialisation of the outflow tract and the development of the epicardium and the fibrous heart skeleton. Dev Dyn. 2003;227(3):431–44.PubMedCrossRefGoogle Scholar
  68. 68.
    Beffagna G, et al. Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res. 2005;65(2):366–73.PubMedCrossRefGoogle Scholar
  69. 69.
    Hu BC, et al. The association between transforming growth factor beta3 polymorphisms and left ventricular structure in hypertensive subjects. Clin Chim Acta. 2010;411(7–8):558–62.PubMedCrossRefGoogle Scholar
  70. 70.
    Conway SJ, Doetschman T, Azhar M. The inter-relationship of periostin, TGF beta, and BMP in heart valve development and valvular heart diseases. ScientificWorldJournal. 2011;11:1509–24.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen B, et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet. 2000;24(3):296–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Erickson SL, et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development. 1997;124(24):4999–5011.PubMedGoogle Scholar
  73. 73.
    Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Loffredo CA. Epidemiology of cardiovascular malformations: prevalence and risk factors. Am J Med Genet. 2000;97(4):319–25.PubMedCrossRefGoogle Scholar
  75. 75.
    Huang JB, et al. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol. 2010;19(5):e183–93.PubMedCrossRefGoogle Scholar
  76. 76.
    Zeng Q, et al. Notch1 promotes the pro-osteogenic response of human aortic valve interstitial cells via modulation of ERK1/2 and nuclear factor-kappaB activation. Arterioscler Thromb Vasc Biol. 2013;33(7):1580–90.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fukuda D, et al. Notch ligand delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci U S A. 2012;109(27):E1868–77.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wang J, Greene SB, Martin JF. BMP signaling in congenital heart disease: new developments and future directions. Birth Defects Res A Clin Mol Teratol. 2011;91(6):441–8.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Yang X, et al. Bone morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J Thorac Cardiovasc Surg. 2009;138(4):1008–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Mohler ER 3rd, et al. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–8.CrossRefGoogle Scholar
  81. 81.
    Ankeny RF, et al. Preferential activation of SMAD1/5/8 on the fibrosa endothelium in calcified human aortic valves—association with low BMP antagonists and SMAD6. PLoS One. 2011;6(6):e20969.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8(11):857–69.PubMedCrossRefGoogle Scholar
  83. 83.
    Pardali E, Goumans MJ, ten Dijke P. Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol. 2010;20(9):556–67.PubMedCrossRefGoogle Scholar
  84. 84.
    Doetschman T, et al. Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Cell Tissue Res. 2012;347(1):203–23.PubMedCrossRefGoogle Scholar
  85. 85.
    Benke K, et al. The role of transforming growth factor-beta in Marfan syndrome. Cardiol J. 2013;20(3):227–34.PubMedCrossRefGoogle Scholar
  86. 86.
    Koch W, et al. Association of transforming growth factor-beta1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease. Arterioscler Thromb Vasc Biol. 2006;26(5):1114–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Yokota M, et al. Association of a T29-->C polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation. 2000;101(24):2783–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Clark-Greuel JN, et al. Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann Thorac Surg. 2007;83(3):946–53.PubMedCrossRefGoogle Scholar
  89. 89.
    Walker GA, et al. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res. 2004;95(3):253–60.CrossRefGoogle Scholar
  90. 90.
    Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol. 2007;171(5):1407–18.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chen JH, et al. Beta-catenin mediates mechanically regulated, transforming growth factor-beta1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol. 2011;31(3):590–7.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Hutcheson JD, et al. Serotonin receptors and heart valve disease—it was meant 2B. Pharmacol Ther. 2011;132(2):146–57.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Jian B, et al. Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am J Pathol. 2002;161(6):2111–21.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Xu J, et al. Serotonin mechanisms in heart valve disease II: the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells. Am J Pathol. 2002;161(6):2209–18.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Nebigil CG, et al. Ablation of serotonin 5-HT(2B) receptors in mice leads to abnormal cardiac structure and function. Circulation. 2001;103(24):2973–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Fabre A, et al. Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. Eur Respir J. 2008;32(2):426–36.PubMedCrossRefGoogle Scholar
  97. 97.
    Vermot J, et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 2009;7(11):e1000246.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gordon WR, et al. Mechanical Allostery: evidence for a force requirement in the proteolytic activation of notch. Dev Cell. 2015;33(6):729–36.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yanagisawa H, et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development. 1998;125(5):825–36.PubMedGoogle Scholar
  100. 100.
    Kurihara Y, et al. Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest. 1995;96(1):293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yalcin HC, et al. Hemodynamic patterning of the avian atrioventricular valve. Dev Dyn. 2011;240(1):23–35.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sun L, Sucosky P. Bone morphogenetic protein-4 and transforming growth factor-beta1 mechanisms in acute valvular response to supra-physiologic hemodynamic stresses. World J Cardiol. 2015;7(6):331–43.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fisher CI, Chen J, Merryman WD. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech Model Mechanobiol. 2013;12(1):5–17.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Balachandran K, et al. Elevated cyclic stretch and serotonin result in altered aortic valve remodeling via a mechanosensitive 5-HT(2A) receptor-dependent pathway. Cardiovasc Pathol. 2012;21(3):206–13.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Balachandran K, et al. Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann Thorac Surg. 2011;92(1):147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Liang YJ, et al. Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-kappaB in cardiomyocytes. Cardiovasc Res. 2006;72(2):303–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ishita Tandon
    • 1
  • Ngoc Thien Lam
    • 1
  • Kartik Balachandran
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations