Baumslag–Solitar Groups

Part of the Compact Textbooks in Mathematics book series (CTM)


We introduce and explore the Baumslag–Solitar groups which is the famous collection of groups first described by G. Baumslag and D. Solitar. This collection, also referred to as BS groups, includes the first examples of finitely generated, one-relator non-hopfian groups. BS groups are widely known and provide many counter-examples and test-cases in combinatorial and geometric group theory.


  1. 2.
    Anshel, M., Stebe, P.: The solvability of the conjugacy problem for certain HNN groups. Bull. Am. Math. Soc. 80, 266–270 (1974)MathSciNetCrossRefGoogle Scholar
  2. 5.
    Baer, R.: Groups without proper isomorphic quotients. Bull. Am. Math. Soc. 50(4), 267–278 (1944)MathSciNetCrossRefGoogle Scholar
  3. 7.
    Bartholdi, L., Šunić, Z.: Some solvable automaton groups mn. Contemp. Math. 394, 11–30 (2006)CrossRefGoogle Scholar
  4. 9.
    Baumslag, G.: A non-Hopfian group. Bull. Am. Math. Soc. 68(3), 196–198 (1962)MathSciNetCrossRefGoogle Scholar
  5. 10.
    Baumslag, G., Solitar, D.: Some two generator one-relator non-Hopfian groups. Bull. Am. Math. Soc. 68(9), 199–201 (1962)MathSciNetCrossRefGoogle Scholar
  6. 11.
    Belk, J.: One sheet of the Cayley graph of the Baumslag–Solitar group BS(1,2). Wikimedia Commons (2013)Google Scholar
  7. 12.
    Belk, J.: Picture showing how the sheets of the Cayley graph of the Baumslag-Solitar group BS(1,2) fit together. Wikimedia Commons (2013)Google Scholar
  8. 19.
    Brunner, A.M., Sidki, S.: The generation of GL(n, Z) by finite state automata. Int. J. Alg. Comput. 8(1), 127–139 (1998)MathSciNetCrossRefGoogle Scholar
  9. 23.
    Chandler, B., Magnus, W.: A History of Combinatorial Group Theory: A Case Study in the History of Ideas. Springer, New York (1982)CrossRefGoogle Scholar
  10. 29.
    de la Harpe, P.: Topics in Geometric Group Theory, pp. 191–196. University of Chicago Press, Chicago (2000)Google Scholar
  11. 47.
    Higman, G.: A finitely related group with an isomorphic proper factor group. J. London Math. Soc. 26, 59–61 (1951)MathSciNetCrossRefGoogle Scholar
  12. 57.
    Magnus, W.: Das identitätsproblem fur̈ Gruppen mit einer definierenden relation. Math. Ann. 106, 295–307 (1932)MathSciNetCrossRefGoogle Scholar
  13. 58.
    Magnus, W.: Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann. 111, 259–280 (1935)MathSciNetCrossRefGoogle Scholar
  14. 63.
    Moldavanskii, D.I.: Isomorphism of the Baumslag-Solitar Groups. Ukrainskii Matematicheskii Zhurnal 43(12), 1684–1686 (1991)MathSciNetGoogle Scholar
  15. 67.
    Neumann, B.H.: A two-generator group isomorphic to a proper factor group. J. Lond. Math. Soc. s1-25(4), 247–248 (1950)MathSciNetCrossRefGoogle Scholar
  16. 68.
    Neumann, B.H.: An essay on free products of groups with amalgamations. Philos. Trans. R. Soc. Lond. Ser. A. 246, 503–554 (1954)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Math and Computer ScienceNew York City College of Technology, The City University of New YorkBrooklynUSA
  2. 2.Department of MathematicsBorough of Manhattan Community College, The City University of New YorkNew YorkUSA
  3. 3.Department of MathematicsMonroe Community CollegeRochesterUSA

Personalised recommendations